Skip to main content

calculus and analysis - Interpolating an Antiderivative



I'd like to be able to make InterpolatingFunctions for antiderivatives of functions that can't be integrated symbolically. However, the following code returns several error messages:


FunctionInterpolation[Integrate[Sqrt[1 + x^3], {x, 0, t}], {t, 0, 10}]

Here are the messages:



Thread::tdlen: "Objects of unequal length in {-1.25,-0.416667,0.416667,1.25}^{} cannot be combined. "


Thread::tdlen: "Objects of unequal length in {0.223144 +3.14159\ I,-0.875469+3.14159\ I,-0.875469,0.223144}\ {}\n cannot be combined. "


Thread::tdlen: "Objects of unequal length in {-1.25,-0.416667,0.416667,1.25}\ {} cannot be combined."


General::stop: "Further output of Thread::tlden will be suppressed during this calculation."


FunctionInterpolation::nreal: Near t = 1.25`, the function did not evaluate to a real number.



FunctionInterpolation::nreal: Near t = 1.3277777777777777`, the function did not evaluate to a real number.



What's going on? Is there a simple way to make this work? Changing Integrate to NIntegrate doesn't help, though the error messages are different:



NIntegrate::nlim: x = t is not a valid limit of integration.


NIntegrate::nlim: x = t is not a valid limit of integration.


NIntegrate::nlim: x = t is not a valid limit of integration.


General::stop: "Further output of NIntegrate::nlim will be suppressed during this calculation. "




Answer




Use NDSolve


antiD = NDSolveValue[{f'[x] == Sqrt[1 + x^3], f[0] == 0}, f, {x, 0, 10}]

Example usage:


Plot[antiD[x], {x, 0, 10}]

Mathematica graphics




Alternatively...


This works because this function can be antidifferentiated (by Mathematica).



antiD = FunctionInterpolation[
Evaluate @ Integrate[Sqrt[1 + x^3], {x, 0, t}, Assumptions -> 0 < t < 10],
{t, 0, 10}]

or...


integral[t_?NumericQ] := NIntegrate[Sqrt[1 + x^3], {x, 0, t}];
FunctionInterpolation[integral[t], {t, 0, 10}]

FunctionInterpolation evaluated its argument on a symbolic t. The pattern test ?NumericQ prevents evaluation of NIntegrate until an actual number is substituted for t. See also What are the most common pitfalls awaiting new users?. Note also that this way does many evaluations of NIntegrate, whereas the NDSolve method does just one integration.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...