Skip to main content

plotting - How to plot periodic function's graphic?


How to plot periodic function's graphic?



For example, $f(t) = t$ when $-5

f[t] := If[-5 <= t <= 5, t, f[t + 10] = f[t]];
Plot[f[t], {t, -20, 20}]

Output



Answer



What about this?


This defines a rather general function myperiodicthat translate a normal function to periodic form, the second parameter {val, min, max} specify a periodic interval of your desired periodic function:


myperiodic[func_, {val_Symbol, min_?NumericQ, max_?NumericQ}] :=
func /. (val :> Mod[val - min, max - min] + min)


Then you can use it to plot things:


Plot[myperiodic[t, {t, -5, 5}] // Evaluate, {t, -40, 40}]

enter image description here


Plot[myperiodic[t^2, {t, -3, 5}] // Evaluate, {t, -40, 40}]

enter image description here






We can extend this function in a couple of possibly useful ways. It may be noted that if t has a global value the plots above will fail, because Evaluate breaks the scoping of Plot. This could be remedied by using the Evaluated option but it would be nice not to need either. We can achieve that by holding arguments unevaluated using HoldAll and then holding at least the Symbol and expression unevaluated while making the substitution. These methods come to mind:



  • Adding Unevaluated and HoldPattern to the existing replacement

  • leveraging the attributes of Pattern and RuleDelayed in an inverted rule form (injector pattern)

  • Using Function which holds parameter name and body

  • An undocumented syntax for With (:=) that does not evaluate substitution expressions


In code:


SetAttributes[{periodic1, periodic2, periodic3, periodic4}, HoldAll]


periodic1[expr_, {s_Symbol, min_?NumericQ, max_?NumericQ}] :=
Unevaluated[expr] /. HoldPattern[s] :> Mod[s, max - min, min]

Quiet[
periodic2[expr_, {s_Symbol, min_?NumericQ, max_?NumericQ}] :=
Mod[s, max - min, min] /. s_ :> expr
]

periodic3[expr_, {s_Symbol, min_?NumericQ, max_?NumericQ}] :=
Function[s, expr][Mod[s, max - min, min]]


periodic4[expr_, {s_Symbol, min_?NumericQ, max_?NumericQ}] :=
With[{s := Mod[s, max - min, min]}, expr]

Testing indicates that the last method is the fastest:


First @ AbsoluteTiming @ Do[#[7 + t^2, {t, -5, 5}], {t, -40, 40, 0.001}] & /@
{periodic1, periodic2, periodic3, periodic4}


{0.35492, 0.382667, 0.237522, 0.235105}


Demonstration of use:


Plot[periodic4[7 + t^2, {t, -5, 5}], {t, -40, 40}, Frame -> True]

enter image description here


The next extension that can be valuable it to have periodic return a function rather than a bare expression. While the functions above evaluate correctly internally in the presence of a global assignment to the declared Symbol the result evaluates with that global value and therefore cannot be reused. Returning a function allows us to use it more generally such as mapping over a list of values, which can have advantage as I will show.


Proposal


SetAttributes[periodic, HoldAll]

periodic[expr_, {s_Symbol, min_?NumericQ, max_?NumericQ}] :=

Join[s &, With[{s := Mod[s, max - min, min]}, expr &]]

(Note that Join works on any head. Function acts to hold the parts of the final Function before it is assembled.)


Now:


periodic[7 + t^2, {t, -5, 5}]


Function[t, 7 + Mod[t, 5 - -5, -5]^2]

Plot[periodic[7 + t^2, {t, -5, 5}][x], {x, -40, 40}, Frame -> True]


enter image description here


(Note that x was used above for clarity but using t would not conflict.)


If the somewhat awkward from of Function returned is a concern know that it will be optimized by Compile, either manually or automatically:


Compile @@ periodic[7 + t^2, {t, -5, 5}]


CompiledFunction[{t}, 7 + (Mod[t + 5, 10] - 5)^2, -CompiledCode-]

The function-generating form does not perform quite as well (as e.g. periodic4) when used naively:



Table[periodic[7 + t^2, {t, -5, 5}][t], {t, -40, 40, 0.001}] // AbsoluteTiming // First


0.3600206

However it allows for superior performance if applied optimally, using Map, which auto-compiles:


periodic[7 + t^2, {t, -5, 5}] /@ Range[-40, 40, 0.001] // AbsoluteTiming // First


0.0130007


As a final touch we can give our function proper syntax highlighting:


SyntaxInformation[periodic] =
{"LocalVariables" -> {"Table", {2}}, "ArgumentsPattern" -> {_, {_, _, _}}};

enter image description here


Mr.Wizard


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...