Skip to main content

Output is Input for a Differential with Sign?


Here's the problem:


For one of my classes, we're supposed to use Mathematica to solve the equation y''=y-b*y' for a variety of b values and specified boundary conditions and plot the outputs. There I have no problem and Mathematica runs well. However, the next problem is to replace the -b*y' with -b*sign(y') and repeat part one. When I do this, Mathematica runs for a long time, then gives up and outputs the input. I tried removing the boundary conditions and just doing the general solution, but it can't figure that out, either. It isn't giving any errors, it just doesn't work. Any ideas? This is what my input looks like:


In[5]:=  beta = 0.2;
Solution = DSolve[{y''[x] == - y[x] - beta * Sign[y'[x]], y[0] == 1, y'[0] == -1}, y[x], x]
Out[6]= DSolve[{y''[x] == -0.2 Sign[y'[x]] - y[x], y[0] == 1, y'[0] == -1}, y[x], x]


Answer



Try to solve the problem numerically


beta = 0.2;

As you have observed, the problem is not solved in symbolic form:


Solution = 
DSolve[{y''[x] == -y[x] - beta*Sign[y'[x]], y[0] == 1, y'[0] == -1}, y[x],
x]

(* -> DSolve[{(y^\[Prime]\[Prime])[x] == -0.2 Sign[Derivative[1][y][x]] - y[x],

y[0] == 1, Derivative[1][y][0] == -1}, y[x], x] *)

Now using NDSolve for x in the interval 0 to 10 (say):


yy[x_] = y[x] /. NDSolve[{y''[x] == -y[x] - beta*Sign[y'[x]], y[0] == 1, y'[0] == -1}, y[x], {x, 0, 10}] [[1]]

(* InterpolatingFunction[{{0.`,10.`}},"<>"][x] *)

This works well, and the plot looks good


Plot[yy[x], {x, 0, 10}]


(* 140925_plot_yy.jpg *)

enter image description here


The following part has been edited because of an error (26.09.14 00:52):


The solution lookes like a damped oscillation. We can try to derive the behaviour of the solution for large x as follows:


Multiplying the differential equation by y' and observing y' Sign(y') = Abs(y') we have


$y' y'' = - y y' - beta |y'|$


which can be written as


$\frac{1}{2} \frac{d}{dx} (y'^2 + y^2) = - beta |y'|$


Up to this point the reasoning is ok but in the following there is a flaw. Now, assuming $beta > 0$ the right hand side is always $<0$ which means that the expression $\frac{1}{2} (y'^2 + y^2)$ is only decreasing with x, which means that it will go to 0 which means in turn that $y\to 0$



Sorry, I shall clarify the asymptotic behaviour later.


Hope this helps, Regards Wolfgang


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...