I want to take this list when the 2
appear 3 times
SeedRandom[1]
list = RandomChoice[{.2, .5, .3} -> {1, 2, 3}, 20]
{3,1,3,1,2,1,2,2,2,3,2,3,2,2,3,3,3,2,2,2}
Hope to get {{3, 1, 3, 1, 2, 1, 2, 2}, {2, 3, 2, 3, 2}, {2, 3, 3, 3, 2, 2},{2}}
.I think GeneralUtilities`PartitionBy
can help to do this,but I'm fail to do it.
i = 0; GeneralUtilities`PartitionBy[list, (If[# == 2, i++;
If[i == 4, i = 0]]; i === 3) &]
Will get nothing. Can anybody give a concise version? Of course, I will feel more happy if I get a GeneralUtilities`PartitionBy
version. Because I have failed many times with it.
Answer
This problem is a variation of:
Applying my Split
method:
list = {3,1,3,1,2,1,2,2,2,3,2,3,2,2,3,3,3,2,2,2};
Module[{n = 0}, Split[list, # != 2 || ++n < 3 || (n = 0) &]]
{{3, 1, 3, 1, 2, 1, 2, 2}, {2, 3, 2, 3, 2}, {2, 3, 3, 3, 2, 2}, {2}}
The obvious comparison is to march's similar code using SplitBy
, and Kuba's Sow
/Reap
method:
SeedRandom[0]
list = RandomInteger[9, 500000];
Module[{i = 0}, SplitBy[list, ⌊1/3 If[# != 2, i, i++]⌋ &]] //
Length // RepeatedTiming
Module[{i = 0}, Sow[#, ⌊If[# == 2, i++, i]/3⌋] & /@ list // Reap // Last] //
Length // RepeatedTiming
Module[{n = 0}, Split[list, # != 2 || ++n < 3 || (n = 0) &]] //
Length // RepeatedTiming
{1.84, 16576}
{1.137, 16576}
{0.305, 16576}
So my code is at least several times faster than other manual index methods.
However Split
itself is not very efficient, cf. Find continuous sequences inside a list.
Applying those faster methods here:
splitEvery[list_, x_, n_Integer] := (
Unitize[list - x]
// SparseArray[#, Automatic, 1] &
// #["AdjacencyLists"][[n ;; ;; n]] &
// {Prepend[# + 1, 1], Append[#, -1]} &
// MapThread[Take[list, {##}] &, #] &
)
splitEvery[list, 2, 3] // Length // RepeatedTiming
{0.021, 16576}
This is nearly an order of magnitude faster than even Kuba's Partition
method.
(UpTo
doesn't work in v10.1 so I use an older equivalent.)
Flatten /@ Partition[Split[list, #1 =!= 2 &], 3, 3, 1, {}] //
Length // RepeatedTiming
{0.194, 16576}
And as usual with list partitioning problems it is the partitioning itself that takes the most time. If we can work with an interval list instead:
intervalEvery[list_, x_, n_Integer] := (
Unitize[list - x]
// SparseArray[#, Automatic, 1] &
// #["AdjacencyLists"][[n ;; ;; n]] &
// {Prepend[# + 1, 1], Append[#, -1]} &
// Transpose
)
intervalEvery[list, 2, 3] // Length // RepeatedTiming
{0.00343, 16576}
The output of that last function:
intervalEvery[{3,1,3,1,2,1,2,2,2,3,2,3,2,2,3,3,3,2,2,2}, 2, 3]
{{1, 8}, {9, 13}, {14, 19}, {20, -1}}
Comments
Post a Comment