I have the trigonometric equation \begin{equation*} \sin^8 x + 2\cos^8 x -\dfrac{1}{2}\cos^2 2x + 4\sin^2 x= 0. \end{equation*} By putting $t = \cos 2x$, I have \begin{equation*} \dfrac{3}{16} t^4+ \dfrac{1}{4}t^3 + \dfrac{5}{8}t^2 -\dfrac{7}{4}t + \dfrac{35}{16} = 0. \end{equation*} How do I tell Mathematica to do that? Mathematica code is
Sin[x]^8 + 2 Cos[x]^8 - 1/2 Cos[2 x]^2 + 4 Sin[x]^2 == 0
Answer
You can use TrigExpand
to expand all trigonometric functions to fundamental forms and then Eliminate
solves the rest
eq1 = Sin[x]^8 + 2 Cos[x]^8 - 1/2 Cos[2 x]^2 + 4 Sin[x]^2 == 0;
eq2 = t == Cos[2 x]
Eliminate[TrigExpand[{eq1, eq2}], x]
Comments
Post a Comment