Skip to main content

calculus and analysis - Derivative of integrated noise Gaussian likelihood


In a Bayesian problem with Gaussian likelihood with mean $\mu$ and a uniform prior on the standard deviation $\sigma$, it is possible to derive the marginal posterior (where $\sigma$ has been integrated out of the joint).


$p(\mu) = \int_a^b \mathcal{N}(x|\mu, \sigma) U(\sigma|a,b) p(\mu) \mathbb{d}\sigma$


which can be done in Mathematica (omitting $p(\mu)$ as it doesn't affect the integration):


Assuming[{a > 0, b > 0, n > 0, sse > 0, b > a}, 
Integrate[(1/(Sqrt[2 Pi sigma^2]))^n

Exp[-(x - mu)^2/(2 sigma^2)] PDF[UniformDistribution[{a, b}], sigma], {sigma, a, b}]]

To yield this expression,


(\[Pi]^(-n/2) (1/(mu - x)^2)^(-(1/2) + n/2) (Gamma[1/2 (-1 + n), (mu - x)^2/(2 a^2)] - 
Gamma[1/2 (-1 + n), (mu - x)^2/(2 b^2)]))/(2 Sqrt[2] (a - b))

Letting $g$ equal the log of the above expression, I can determine its derivative wrt x,


FullSimplify@D[g, mu]

which equals this horror,



 fDeriv2[x_, mu_, n_, a_, b_] := (-2^(3/2 - n/2) E^(-((mu - x)^2/(2 a^2))) ((mu - x)^2/a^2)^(1/2 (-1 + n)) +
2^(3/2 - n/2) E^(-((mu - x)^2/(2 b^2))) ((mu - x)^2/b^2)^(
1/2 (-1 + n)) - (-1 + n) (Gamma[1/2 (-1 + n), (mu - x)^2/(2 a^2)] -
Gamma[1/2 (-1 + n), (mu - x)^2/(2 b^2)]))/((mu - x) (Gamma[1/2 (-1 + n), (mu - x)^2/(2 a^2)] -
Gamma[1/2 (-1 + n), (mu - x)^2/(2 b^2)]))

The issue with this expression is that it becomes unstable when $x - mu$ is small and $n$ is large.


For example,


fDeriv2[0.1, 0.2, 100, 2, 4]


yields


ComplexInfinity

I know that the derivative exists but the denominator and the numerator are either really big or small which, with numerical under/over-flow leads the calculation to fail.


Does anyone know how I can derive a more 'friendly' expression for the derivative that doesn't have these pathologies?


Edit: to further illustrate the pathologies of this expression, I plot it as a function of x:


Plot[fDeriv2[x, 10, 100, 2, 4], {x, 10, 100}, PlotRange -> Full]

enter image description here



Answer




The answer to this is actually much simpler than it appears since I failed to notice that there is a common term (differences of two incomplete Gammas) in the above. This means that we can avoid the numerical issues above by the following expression (note, not an approximation):


fDeriv[x_, mu_, n_, a_, b_] := ((-2^(3/2 - n/2) E^(-((mu - x)^2/(2 a^2))) ((mu - x)^2/
a^2)^(1/2 (-1 + n)) +
2^(3/2 - n/2) E^(-((mu - x)^2/(2 b^2))) ((mu - x)^2/
b^2)^(1/2 (-1 + n)))/((mu - x) Gamma[
1/2 (-1 + n), (mu - x)^2/(2 a^2), (mu - x)^2/(2 b^2)]) - (-1 +
n)/(mu - x))

which when plotted produces a graph indistinguishable from that of JimB's answer.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...