Skip to main content

differential equations - Determining the price of an option using Black-Scholes


Question


Question2


Question3


Code for randomly generated interest rates:



ClearAll["Global`*"]
Δt = .0001;
μ = 0;
γ = .005;
t = .0833;
rndm := RandomVariate[NormalDistribution[0, Δt^.5], 834];
Prepend[Accumulate[rndm] γ + μ Δt + .0158, .0158];
k = 100;
SeedRandom[1]
rate = Table[Prepend[Accumulate[rndm] γ + μ dt + .0158, .0158], k];


Code for BTCS method (transition matrix)


btcs[k_, n_] = 
SparseArray[
{{m_, m_} -> 1 - 2*λ*Indexed[s, m]^2 - Indexed[rate, {k, n}]*dt,
{m_, l_} /; l - m == 1 ->
λ*Indexed[s, m]^2 + μ*Indexed[rate, {k, n}]*Indexed[s, m],
{m_, l_} /; m - l == 1 ->
λ*Indexed[s, m]^2 - μ*Indexed[rate, {k, n}]*Indexed[s, m]},
{101, 101}];


Code for Crank-Nicolson (transition matricies)


(*V^(n+1) time step to V^(n+1) time step*)

cn1[k2_, n_] =
SparseArray[
{{m_, m_} ->
1/2 + 1/2*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) + 1/2*Indexed[rate, {k2, n}]*dt,
{m_, l_} /; l - m == 1 ->
-(1/4)*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) - 1/2*Indexed[rate, {k2, n}]*(Indexed[s, i]/(2*Δ*Indexed[s, i]^2 Δt)),

{m_, l_} /; m - l == 1 ->
-(1/4)*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) + 1/2*Indexed[rate, {k2, n}]*(Indexed[s, i]/(2*Δ*Indexed[s, i]^2 Δt))},
{101, 101}]

(*from V^(n+(1/2)) time step to V^n*)

cn2[k_, n_] =
SparseArray[
{{m_, m_} ->
3/2 + 1/2*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) + 1/2*Indexed[rate, {k2, n}]*dt,

{m_, l_} /; l - m == 1 ->
-(1/4)*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) - 1/2*Indexed[rate, {k2, n}]*(Indexed[s, i]/(2*Δ*Indexed[s, i]^2 Δt)),
{m_, l_} /; m - l == 1 ->
-(1/4)*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) + 1/2*Indexed[rate, {k2, n}]*(Indexed[s, i]/(2*Δ*Indexed[s, i]^2 Δt))},
{101, 101}]

How should I approach calculating the ratio ||Vn||/||Vn+1|| using the first sequence interest rates randomly generated above? And how can can I implement the code to calculate the option using FTCS (forward Euler), BTCS (backward Euler), and Crank-Nicolson using the transition matrices above?


Here is code I used before to solve a different PDE using Crank-Nicolson:


    s = 0.5;
h = 0.1;

k = 0.005;
r = k/(h^2);
a = 0;
b1 = 1;
m = (b1 - a)/h;
n = s/k;

For[i = 0,i <= m,i++,
x[i] = a + i*h;
u[x[i], 0] = x[i]*(1 - x[i])];

For[j=0,j<=n,j++,
t[j]=j*k;
u[0,t[j]]=0;
u[1,t[j]]=0];
A =
{{2 + 2*r, -r, 0, 0, 0, 0, 0, 0, 0},
{-r, 2 + 2*r, -r, 0, 0, 0 ,0, 0, 0},
{0, -r, 2 + 2*r, -r, 0, 0, 0, 0, 0},
{0, 0, -r, 2 + 2*r, -r, 0, 0, 0, 0},
{0, 0, 0, -r, 2 + 2*r, -r, 0, 0, 0},

{0, 0 ,0, 0, -r, 2 + 2*r, -r, 0, 0},
{0, 0, 0, 0, 0, -r, 2 + 2*r, -r, 0},
{0, 0, 0, 0, 0, 0, -r, 2 + 2*r, -r},
{0, 0, 0, 0, 0, 0, 0, -r, 2 + 2*r}};
u[0] = Table[u[x[i], 0],{i, 1, m - 1}];
For[j = 0,j < n, j++,
b[1, j] = r*u[0, t[j]] + (2 - 2*r)*u[j][[1]] + r*u[j][[2]] + r*u[0, t[j + 1]];
For[i = 2, i <= m - 2, i++,
b[i, j] = r*u[j][[i - 1]]+ (2 - 2*r)*u[j][[i]] + r*u[j][[i + 1]]];
b[9, j] =

r*u[j][[m - 2]] + (2 - 2*r)*u [j][[m -1]] + r*u[1, t[j]] + r*u[1, t[j + 1]];
b[j] = Table[b[l, j], {l, 1, m - 1}];
u[j + 1] = Inverse[A].Transpose[{b[j]}];
u[j + 1] = Transpose[u[j + 1]][[1]];
Print[u[j + 1]];
Print[".............................."]];

Can this be modified to include a sparse array? Any help will be greatly appreciated.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...