Skip to main content

differential equations - Determining the price of an option using Black-Scholes


Question


Question2


Question3


Code for randomly generated interest rates:



ClearAll["Global`*"]
Δt = .0001;
μ = 0;
γ = .005;
t = .0833;
rndm := RandomVariate[NormalDistribution[0, Δt^.5], 834];
Prepend[Accumulate[rndm] γ + μ Δt + .0158, .0158];
k = 100;
SeedRandom[1]
rate = Table[Prepend[Accumulate[rndm] γ + μ dt + .0158, .0158], k];


Code for BTCS method (transition matrix)


btcs[k_, n_] = 
SparseArray[
{{m_, m_} -> 1 - 2*λ*Indexed[s, m]^2 - Indexed[rate, {k, n}]*dt,
{m_, l_} /; l - m == 1 ->
λ*Indexed[s, m]^2 + μ*Indexed[rate, {k, n}]*Indexed[s, m],
{m_, l_} /; m - l == 1 ->
λ*Indexed[s, m]^2 - μ*Indexed[rate, {k, n}]*Indexed[s, m]},
{101, 101}];


Code for Crank-Nicolson (transition matricies)


(*V^(n+1) time step to V^(n+1) time step*)

cn1[k2_, n_] =
SparseArray[
{{m_, m_} ->
1/2 + 1/2*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) + 1/2*Indexed[rate, {k2, n}]*dt,
{m_, l_} /; l - m == 1 ->
-(1/4)*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) - 1/2*Indexed[rate, {k2, n}]*(Indexed[s, i]/(2*Δ*Indexed[s, i]^2 Δt)),

{m_, l_} /; m - l == 1 ->
-(1/4)*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) + 1/2*Indexed[rate, {k2, n}]*(Indexed[s, i]/(2*Δ*Indexed[s, i]^2 Δt))},
{101, 101}]

(*from V^(n+(1/2)) time step to V^n*)

cn2[k_, n_] =
SparseArray[
{{m_, m_} ->
3/2 + 1/2*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) + 1/2*Indexed[rate, {k2, n}]*dt,

{m_, l_} /; l - m == 1 ->
-(1/4)*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) - 1/2*Indexed[rate, {k2, n}]*(Indexed[s, i]/(2*Δ*Indexed[s, i]^2 Δt)),
{m_, l_} /; m - l == 1 ->
-(1/4)*((σ^2 Indexed[s, i]^2)/(Δ*Indexed[s, i]^2)*Δt) + 1/2*Indexed[rate, {k2, n}]*(Indexed[s, i]/(2*Δ*Indexed[s, i]^2 Δt))},
{101, 101}]

How should I approach calculating the ratio ||Vn||/||Vn+1|| using the first sequence interest rates randomly generated above? And how can can I implement the code to calculate the option using FTCS (forward Euler), BTCS (backward Euler), and Crank-Nicolson using the transition matrices above?


Here is code I used before to solve a different PDE using Crank-Nicolson:


    s = 0.5;
h = 0.1;

k = 0.005;
r = k/(h^2);
a = 0;
b1 = 1;
m = (b1 - a)/h;
n = s/k;

For[i = 0,i <= m,i++,
x[i] = a + i*h;
u[x[i], 0] = x[i]*(1 - x[i])];

For[j=0,j<=n,j++,
t[j]=j*k;
u[0,t[j]]=0;
u[1,t[j]]=0];
A =
{{2 + 2*r, -r, 0, 0, 0, 0, 0, 0, 0},
{-r, 2 + 2*r, -r, 0, 0, 0 ,0, 0, 0},
{0, -r, 2 + 2*r, -r, 0, 0, 0, 0, 0},
{0, 0, -r, 2 + 2*r, -r, 0, 0, 0, 0},
{0, 0, 0, -r, 2 + 2*r, -r, 0, 0, 0},

{0, 0 ,0, 0, -r, 2 + 2*r, -r, 0, 0},
{0, 0, 0, 0, 0, -r, 2 + 2*r, -r, 0},
{0, 0, 0, 0, 0, 0, -r, 2 + 2*r, -r},
{0, 0, 0, 0, 0, 0, 0, -r, 2 + 2*r}};
u[0] = Table[u[x[i], 0],{i, 1, m - 1}];
For[j = 0,j < n, j++,
b[1, j] = r*u[0, t[j]] + (2 - 2*r)*u[j][[1]] + r*u[j][[2]] + r*u[0, t[j + 1]];
For[i = 2, i <= m - 2, i++,
b[i, j] = r*u[j][[i - 1]]+ (2 - 2*r)*u[j][[i]] + r*u[j][[i + 1]]];
b[9, j] =

r*u[j][[m - 2]] + (2 - 2*r)*u [j][[m -1]] + r*u[1, t[j]] + r*u[1, t[j + 1]];
b[j] = Table[b[l, j], {l, 1, m - 1}];
u[j + 1] = Inverse[A].Transpose[{b[j]}];
u[j + 1] = Transpose[u[j + 1]][[1]];
Print[u[j + 1]];
Print[".............................."]];

Can this be modified to include a sparse array? Any help will be greatly appreciated.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...