Skip to main content

equation solving - Problem with NSolve Speed



I have a very complicated function but only of 1 variable. I want to find the first value for which that function is zero. Mathematica can easily plot it:


func = Det[coeffMatrix];
Plot[func, {\[Beta]1, 0, 3}]

enter image description here



From that plot, one can easily see that the first value would be ~2.556.


To show that $\beta_1$ = 2.556 is actually the approximate solution:


func /. \[Beta]1 -> 2.556


-0.00139597



However, when I try to find it numerically:


NSolve[func == 0 && 0 < \[Beta]1 < 10, \[Beta]1]


...it just runs and runs and runs and never gives an answer. Why ? and how can I fix it ?


The complete code


constants = {b1 -> (-(Cosh[
0.68*\[Beta]1]*(0.6553600000000004*Cos[0.15*\[Beta]1]*
Cos[0.68*\[Beta]1] -
0.6553600000000004*Cos[0.68*\[Beta]1]*
Cosh[0.15*\[Beta]1] +
1.2621440000000002*Sin[0.15*\[Beta]1]*Sin[0.68*\[Beta]1] +
0.7378559999999998*Sin[0.68*\[Beta]1]*
Sinh[0.15*\[Beta]1])) +

Cos[0.68*\[Beta]1]*(-0.7378559999999998*Sin[0.15*\[Beta]1] -
1.2621440000000002*Sinh[0.15*\[Beta]1])*
Sinh[0.68*\[Beta]1])/(Cosh[
0.68*\[Beta]1]*(-0.6553600000000004*Cos[0.68*\[Beta]1]*
Sin[0.15*\[Beta]1] +
1.2621440000000002*Cos[0.15*\[Beta]1]*Sin[0.68*\[Beta]1] +
0.7378559999999998*Cosh[0.15*\[Beta]1]*Sin[0.68*\[Beta]1] -
0.6553600000000004*Cos[0.68*\[Beta]1]*Sinh[0.15*\[Beta]1]) +
Cos[0.68*\[Beta]1]*(0.7378559999999998*Cos[0.15*\[Beta]1] +
1.2621440000000002*Cosh[0.15*\[Beta]1])*Sinh[0.68*\[Beta]1]),

b2 -> (2.5*
Sec[0.68*\[Beta]1]*(Cosh[
0.68*\[Beta]1]*(-0.26214400000000015 +
0.26214400000000015*Cos[0.15*\[Beta]1]*
Cosh[0.15*\[Beta]1] -
Sin[0.15*\[Beta]1]*Sinh[0.15*\[Beta]1]) +
0.8*(Cosh[0.15*\[Beta]1]*Sin[0.15*\[Beta]1] -
Cos[0.15*\[Beta]1]*Sinh[0.15*\[Beta]1])*
Sinh[0.68*\[Beta]1]))/((0.7378559999999998*
Cos[0.15*\[Beta]1] +

1.2621440000000002*Cosh[0.15*\[Beta]1])*Sinh[0.68*\[Beta]1] +
Cosh[0.68*\[Beta]1]*(-0.6553600000000004*Sin[0.15*\[Beta]1] -
0.6553600000000004*Sinh[0.15*\[Beta]1] +
1.2621440000000002*Cos[0.15*\[Beta]1]*Tan[0.68*\[Beta]1] +
0.7378559999999998*Cosh[0.15*\[Beta]1]*Tan[0.68*\[Beta]1])),
d2 -> (2.5*
Sech[0.68*\[Beta]1]*(-0.26214400000000015*Cos[0.68*\[Beta]1] +
0.8*Cosh[
0.15*\[Beta]1]*(0.3276800000000002*Cos[0.15*\[Beta]1]*
Cos[0.68*\[Beta]1] +

Sin[0.15*\[Beta]1]*
Sin[0.68*\[Beta]1]) + (Cos[0.68*\[Beta]1]*
Sin[0.15*\[Beta]1] -
0.8*Cos[0.15*\[Beta]1]*Sin[0.68*\[Beta]1])*
Sinh[0.15*\[Beta]1]))/(-0.6553600000000004*
Cos[0.68*\[Beta]1]*Sin[0.15*\[Beta]1] +
1.2621440000000002*Cos[0.15*\[Beta]1]*Sin[0.68*\[Beta]1] -
0.6553600000000004*Cos[0.68*\[Beta]1]*Sinh[0.15*\[Beta]1] +
0.7378559999999998*Cos[0.15*\[Beta]1]*Cos[0.68*\[Beta]1]*
Tanh[0.68*\[Beta]1] +

Cosh[0.15*\[Beta]1]*(0.7378559999999998*Sin[0.68*\[Beta]1] +
1.2621440000000002*Cos[0.68*\[Beta]1]*Tanh[0.68*\[Beta]1]))}

matrix = {{a1 (Sin[u \[Beta]1] - Sinh[u \[Beta]1]),
b1 (Cos[u \[Beta]1] - Cosh[u \[Beta]1]), -b2*
Cos[y*\[Theta]*\[Beta]1], -d2*
Cosh[y*\[Theta]*\[Beta]1]}, {a1 (Cos[u \[Beta]1] -
Cosh[u \[Beta]1]), b1 (-Sin[u \[Beta]1] - Sinh[u \[Beta]1]),
b2*\[Theta]*Sin[y*\[Theta]*\[Beta]1], -d2*\[Theta]*
Sinh[y*\[Theta]*\[Beta]1]}, {a1 (-Sin[u \[Beta]1] -

Sinh[u \[Beta]1]), b1 (-Cos[u \[Beta]1] - Cosh[u \[Beta]1]),
b2*\[Alpha]^4*\[Theta]^2*
Cos[y*\[Theta]*\[Beta]1], -d2*\[Alpha]^4*\[Theta]^2*
Cosh[y*\[Theta]*\[Beta]1]}, {a1 (-Cos[u \[Beta]1] -
Cosh[u \[Beta]1]),
b1 (Sin[u \[Beta]1] -
Sinh[u \[Beta]1]), -b2*\[Alpha]^4*\[Theta]^3*
Sin[y*\[Theta]*\[Beta]1], -d2*\[Alpha]^4*\[Theta]^3*
Sinh[y*\[Theta]*\[Beta]1]}};


testingParam = { \[Theta] -> 0.8, \[Alpha] -> 0.8, u -> 0.15,
y -> 1 - 0.15} ;

coeffMatrix = (matrix /. a1 -> 1) /. constants /. testingParam ;

func = Det[coeffMatrix];
NSolve[func == 0 && 0 < \[Beta]1 < 10, \[Beta]1]

Answer



From: About multi-root search in Mathematica for transcendental equations


f[\[Beta]1_] = Det[coeffMatrix];

zeros = Reap[
NDSolve[{y'[x] == D[f[x], x], WhenEvent[y[x] == 0, Sow[{x, y[x]}]],
y[1] == f[1]}, {}, {x, 3, 0.01}]][[-1, 1]]
Plot[f[x], {x, 0, 3},
Epilog -> {PointSize[Medium], Red, Point[zeros]}]


{{2.61534, -5.0246*10^-18}}



enter image description here



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...