Skip to main content

calculus and analysis - Finding volume of a segment


I'm still pretty new to Mathematica, so I would like to seek advice regarding a geometrical problem.


I am currently trying to define that as an extra condition in the Mathematica code below.


  reg = ImplicitRegion[x^2/a^2 + y^2/b^2 + z^2/c^2 <= 1 {z, y, x}];
Volume[reg, Assumptions -> a > 0 && b > 0 && c > 0]

Any one has any idea how to incorporate it into the extra conditions in defining the implicit region?




Answer



Let you have a vector ${\bf p}$, which is perpendicular to the plane and an ellipsoid with axes $(a,b,c)$. The illustration (2D for simplicity):


enter image description here


Mathematica can calculate the numeric value of the clipped volume easily


Nvolume[p_, abc_] := Volume[RegionIntersection[
ImplicitRegion[{x, y, z}.N[p] > 0, {x, y, z}],
Ellipsoid[N[abc] {1, 0, 0}, N[abc]]]]

p = RandomReal[{-1, 1}, 3];
abc = RandomReal[{1, 2}, 3];


Nvolume[p, abc]
(* 16.2584 *)

Mathematica cannot derive the general formula, but it isn't difficult to derive manually. Let us introduce new coordinates


$$ x' = x/a, \quad y' = y/b, \quad z' = z/c. $$


In these coordinates the ellipsoid becomes the unit ball


enter image description here


The Jacobian of this transformation is $J=abc$. In the new coordinates the normalized perpendicular vector is


$$ {\bf n} = \frac{(ap_x,bp_y,cp_z)}{\sqrt{a^2p_x^2+b^2p_y^2+c^2p_z^2}}. $$



Now it is simple to integrate the volume along the axis $\xi$ because the cross section is a circle


$$ V=abc\int_{-n_x}^1\pi(1-\xi^2)d\xi = \pi abc \left(\frac{2}{3} + n_x - \frac{n_x^3}{3}\right) $$


volume[p_, abc_] := π Times @@ abc (2/3 + # - #^3/3) &@@ Normalize[abc p]

volume[p, abc]
(* 16.2584 *)

The result is the same.




Update: OP asks also about the area of the intersection. It is also an interesting question.



Mathematica region functionality is very powerful for numerical computations:


Narea[p_, abc_] := Area[RegionIntersection[ImplicitRegion[{x, y, z}.N[p] == 0, {x, y, z}], 
Ellipsoid[N[abc] {1, 0, 0}, N[abc]]]]

Narea[p, abc]
(* 6.20243 *)

The analytic formula can be derived using the Dirac $\delta$-function
\begin{multline} A = \int_\text{ellipse} \delta \left({\bf r}\cdot\frac{{\bf p}}{p}\right)d{\bf r} = abcp \int_\text{unit ball} \delta \left(x'ap_x+y'bp_y+z'cp_z\right)d{\bf r}' = \\ \frac{abcp}{\sqrt{a^2p_x^2+b^2p_y^2+c^2p_z^2}}\int_\text{unit ball} \delta \left({\bf r}'\cdot{\bf n}\right)d{\bf r}'. \end{multline} It is the cross section of the unit ball. Hence \begin{equation} A = \frac{\pi abcp (1-n_x^2)}{\sqrt{a^2p_x^2+b^2p_y^2+c^2p_z^2}}. \end{equation}


area[p_, abc_] := π Times @@ abc (1 - #^2) & @@ Normalize[abc p] Norm[p]/Norm[abc p];


area[p, abc]
(* 6.20243 *)

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...