Skip to main content

numerical integration - Incorrect solution of diffusion equation with Neumann boundary conditions


I want to set up a PDE model, which takes a two-dimensional diffusion equation into account. The key problem is that I have some trouble in solving the two-dimensional diffusion equation numerically. Consider the following code:


L = 10;
T = 10;
system = {
D[c[x, y, t], {t, 1}] == D[c[x, y, t], {x, 2}] + D[c[x, y, t], {y, 2}],
Derivative[1, 0, 0][c][0, y, t] == 0,
Derivative[1, 0, 0][c][L, y, t] == 0,

c[x, 0, t] == c[x, L, t],
c[x, y, 0] == 1
};
sol = NDSolve[system, c, {x, 0, L}, {y, 0, L}, {t, 0, T}];
Manipulate[Plot3D[Evaluate[c[x, y, t] /. sol], {x, 0, L}, {y, 0, L}], {{t,T}, 0, T}]

Mathematica graphics


As you can see for t = 10 there are artifacts at the two edges where the Neumann conditions were applied.


Obviously, c[x, y, t] = 1 solves the system and since this is the initial condition Mathematica should have no trouble to compute it numerically. It tried various ODE solvers ("ImplicitRungeKutta", "BDF", "Adams"), but it seems that there is some problem with the spatial discretization, perhaps because of the Neumann boundary condition for the variable x.


Any suggestions how to fix it?




Answer



One option is to use a pseudospectral difference order, explained here.


This then works:


L = 10;
T = 10;
system = {D[c[x, y, t], {t, 1}] ==
D[c[x, y, t], {x, 2}] + D[c[x, y, t], {y, 2}],
Derivative[1, 0, 0][c][0, y, t] == 0,
Derivative[1, 0, 0][c][ L, y, t] == 0,
c[x, 0, t] == c[x, L, t],

c[x, y, 0] == 1};
sol = NDSolve[system, c, {x, 0, L}, {y, 0, L}, {t, 0, T},
Method -> {"MethodOfLines",
"SpatialDiscretization" -> {"TensorProductGrid",
"DifferenceOrder" -> "Pseudospectral"}}];
Manipulate[
Plot3D[Evaluate[c[x, y, T] /. sol], {x, 0, L}, {y, 0, L},
PlotRange -> {0.9, 1.1}], {{t, T}, 0, T}]

Other things you might want to try is to use a finer grid, also explained in the above document.



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...