Skip to main content

numerical integration - Incorrect solution of diffusion equation with Neumann boundary conditions


I want to set up a PDE model, which takes a two-dimensional diffusion equation into account. The key problem is that I have some trouble in solving the two-dimensional diffusion equation numerically. Consider the following code:


L = 10;
T = 10;
system = {
D[c[x, y, t], {t, 1}] == D[c[x, y, t], {x, 2}] + D[c[x, y, t], {y, 2}],
Derivative[1, 0, 0][c][0, y, t] == 0,
Derivative[1, 0, 0][c][L, y, t] == 0,

c[x, 0, t] == c[x, L, t],
c[x, y, 0] == 1
};
sol = NDSolve[system, c, {x, 0, L}, {y, 0, L}, {t, 0, T}];
Manipulate[Plot3D[Evaluate[c[x, y, t] /. sol], {x, 0, L}, {y, 0, L}], {{t,T}, 0, T}]

Mathematica graphics


As you can see for t = 10 there are artifacts at the two edges where the Neumann conditions were applied.


Obviously, c[x, y, t] = 1 solves the system and since this is the initial condition Mathematica should have no trouble to compute it numerically. It tried various ODE solvers ("ImplicitRungeKutta", "BDF", "Adams"), but it seems that there is some problem with the spatial discretization, perhaps because of the Neumann boundary condition for the variable x.


Any suggestions how to fix it?




Answer



One option is to use a pseudospectral difference order, explained here.


This then works:


L = 10;
T = 10;
system = {D[c[x, y, t], {t, 1}] ==
D[c[x, y, t], {x, 2}] + D[c[x, y, t], {y, 2}],
Derivative[1, 0, 0][c][0, y, t] == 0,
Derivative[1, 0, 0][c][ L, y, t] == 0,
c[x, 0, t] == c[x, L, t],

c[x, y, 0] == 1};
sol = NDSolve[system, c, {x, 0, L}, {y, 0, L}, {t, 0, T},
Method -> {"MethodOfLines",
"SpatialDiscretization" -> {"TensorProductGrid",
"DifferenceOrder" -> "Pseudospectral"}}];
Manipulate[
Plot3D[Evaluate[c[x, y, T] /. sol], {x, 0, L}, {y, 0, L},
PlotRange -> {0.9, 1.1}], {{t, T}, 0, T}]

Other things you might want to try is to use a finer grid, also explained in the above document.



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...