Skip to main content

finite element method - Poisson equation with pure Neumann boundary conditions


Dear Mathematica users,


I would like to numerically solve a, as the title says, Poisson equation with pure Neumann boundary conditions


$-\nabla^2(\psi)=f$
$\nabla(\psi)\cdot \text{n}=g$



Is it possible?


For an example I will use the demo from FEniCS project.


$f=10\text{Exp}(-((x - 0.5)^2 + (y - 0.5)^2)/0.02)$
$g=-\text{Sin}(5x)$


In Mathematica


f = 10*Exp[-(Power[x - 0.5, 2] + Power[y - 0.5, 2])/0.02]
g = -Sin[5*x];
Needs["NDSolve`FEM`"]
bmesh = ToBoundaryMesh["Coordinates" -> {{0., 0.}, {1, 0.}, {1, 1}, {0., 1}, {0.5, 0.5}},"BoundaryElements" -> {LineElement[{{1, 2}, {2, 3}, {3, 4}, {4,1}}]}];
mesh = ToElementMesh[bmesh, "MaxCellMeasure" -> 0.001];


m[x_, y_] =
NDSolveValue[{-Laplacian[u[x, y], {x, y}] == f + NeumannValue[g, True]
(*,DirichletCondition[u[x,y]==0, x==0.5&&y==0.5]*)}, u, {x, y} \[Element] mesh][x, y]

ddfdx[x_, y_] := Evaluate[Derivative[1, 0][m][x, y]];
ddfdy[x_, y_] := Evaluate[Derivative[0, 1][m][x, y]];
Show[ContourPlot[m[x, y], {x, y} \[Element] mesh, PlotLegends -> Automatic, Contours -> 50], VectorPlot[{ddfdx[x, y], ddfdy[x, y]}, {x, y} \[Element] mesh,
VectorColorFunction -> Hue, VectorScale -> {Small, 0.6, None}]]


Trying to solve this in Mathematica gives a clear and understandable error


NDSolveValue::femibcnd: No DirichletCondition or Robin-type NeumannValue was specified; the result may be off by a constant value.

However, the result is not so clear and understandable.


enter image description here


The answer one would like to get should look something like the following image enter image description here


I tried equation elimination from this post, i.e. using


DirichletCondition[u[x, y] == 0, x == 0.5 && y == 0.5]

to get the result. Now it looks almost decent if one doesn't care about the sink which appears (and wrong gradient). Sadly I do care as I'm interested in the gradient of $\psi$ so such an approach leads me nowhere.



enter image description here


enter image description here


So then the question - is it possible to numerically solve Poisson equation with pure Neumann boundary conditions with Mathematica? Can anyone suggest some steps how to do this?


To add, sadly I am not a mathematician so I lack the ability to implement some routine on my own. Maybe something can be done using the weak formulation as in the example, but before trying to implement (would it actually be possible?) that I would like to learn if there is another way.



Answer



That's a typical problem; it is caused by the matrix of the discretized system having a one-dimensional kernel (and cokernel). One can stabilize the system by adding a row and a column that represent a homogeneous mean-value constraint. I don't know whether NDSolve can do that (user21 will be able to tell us), but one can do that with low-level FEM-programming:


Needs["NDSolve`FEM`"]
bmesh = ToBoundaryMesh[
"Coordinates" -> {{0., 0.}, {1, 0.}, {1, 1}, {0., 1}, {0.5, 0.5}},
"BoundaryElements" -> {LineElement[{{1, 2}, {2, 3}, {3, 4}, {4, 1}}]}];

mesh = ToElementMesh[bmesh, "MaxCellMeasure" -> 0.001];

vd = NDSolve`VariableData[{"DependentVariables", "Space"} -> {{u}, {x, y}}];
sd = NDSolve`SolutionData[{"Space"} -> {mesh}];
cdata = InitializePDECoefficients[vd, sd,
"DiffusionCoefficients" -> {{-IdentityMatrix[2]}},
"MassCoefficients" -> {{1}},
"LoadCoefficients" -> {{f}}
];
bcdata = InitializeBoundaryConditions[vd, sd, {{NeumannValue[g, True]}}];

mdata = InitializePDEMethodData[vd, sd];

(*Discretization*)
dpde = DiscretizePDE[cdata, mdata, sd];
dbc = DiscretizeBoundaryConditions[bcdata, mdata, sd];
{load, stiffness, damping, mass} = dpde["All"];
mass0 = mass;
DeployBoundaryConditions[{load, stiffness}, dbc];



enter image description here



Here the warning message is created. We ignore it because we augment the stiffness matrix in the following way:


a = SparseArray[{Total[mass0]}];
L = ArrayFlatten[{{stiffness, Transpose[a]}, {a, 0.}}];
b = Flatten[Join[load, {0.}]];
v = LinearSolve[L, b, Method -> "Pardiso"][[1 ;; Length[mass]]];

Now we can plot the solution:


solfun = ElementMeshInterpolation[{mesh}, v];

DensityPlot[solfun[x, y], {x, y} ∈ mesh,
ColorFunction -> "SunsetColors"]

enter image description here


I leave the cosmetics to you. Beware that the derivatives of these finite-element solutions are guaranteed to be close to the actual solution only in the $L^2$-norm. So it may happen that the gradient vector field looks much rougher than you would expect.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...