Skip to main content

Find names of the functions defined in a file


Lets say I have a file named file.m that contains:



test[] := (
Print["test"]
)

How would I go about extracting the function declarations in such a file consistently as a list?


I have figured out how to extract the data without having it execute.


Import["file.m", "Text"]

This is my current code.


Cases[

FullForm[
MakeExpression[Import["file.m", "Text"], TraditionalForm]
],
SetDelayed[x__, y__] -> f[x, y]
]

Answer



Preamble


This is not such an easy task actually, if you want to do this fast and clean. I have been developing some functionality for one of my side projects, for which I needed to analyze symbols inside packages, so I will share some of the code I ended up with.


Speed


The following function will be two orders of magnitude faster than the one based on Import[...,"HeldExpressions"]:



ClearAll[loadFile];
loadFile[path_String?FileExistsQ]:=
DeleteCases[
ToExpression[
FromCharacterCode[BinaryReadList[path]],InputForm,HoldComplete
],
Null
]

hopefully this function is still robust enough.



Benchmarks


Benchmarks on a medium-size package:


file = FileNameJoin[{$InstallationDirectory,"SystemFiles","Links","JLink", "JLink.m"}];

Do[Import[file, "HeldExpressions"], {100}] // AbsoluteTiming
Do[loadFile[file], {100}] // AbsoluteTiming

(*

{4.351563, Null}

{0.153320, Null}
*)

The format of the result of loadFile is a little different - it just wraps all code in one HoldComplete. But it is easy to transform to the partial HoldComplete wrapped around the pieces.


The speed difference can be quite important (for my application it was. I would have been in trouble using Import).


Namespace pollution


The problem


Perhaps even worse than the speed issue is the one of namespace pollution, which is a flaw shared by both methods described so far. The new symbols are being created as a result of parsing the code, and they are created in whatever happens to be the current working context. For example, for the case at hand:


Names["Global`*`*"]//Short


(*
{Global`Private`arg,Global`Private`arg$,Global`Private`e,
<<21>>,Global`Private`val,Global`Private`val$,Global`Package`$jlinkDir}
*)

Sugegsted solution


With the implementation details described at the bottom of the post, here is the way I ended up doing this: I introduced the macro with the following signature:


withHeldCodeInTemporaryContext[{var_Symbol, code_}, fname_, opts : OptionsPattern[]]

which is supposed to read in the file fname, parse it into some temporary context, assign the result to a variable var, then execute the code code, and finally clean up that temporary context. Here is an example of use (you will need to run the code posted below for it to work):



Block[
{
heldCode,
file=
FileNameJoin[
{$InstallationDirectory,"SystemFiles","Links","JLink","JLink.m"}
]
},
withHeldCodeInTemporaryContext[
{

heldCode,
Union[
Cases[heldCode,s_Symbol:>ToString[Unevaluated[s]],\[Infinity],Heads->True]
]
},
file
]
]

This code collects all the symbols which build up the code being read. The result looks like:



(*
{And,AppendTo,BeginPackage,Blank,Check,Close,
<<78>>,$ContextPath,$Failed,$Input,$Off,$SystemID,$VersionNumber}
*)

but one can check that the working context (or any other context) was not polluted.


Implementation


Here is the code (formatting done using the code formatter palette):


SetAttributes[CleanUp,HoldAll];
CleanUp[expr_,cleanup_]:=

Module[{exprFn,result,abort=False,rethrow=True,seq},
exprFn[]:=
expr;
result=
CheckAbort[
Catch[Catch[result=exprFn[];rethrow=False;result],_,seq[##1]&],
abort=True
];
cleanup;
If[abort,Abort[]];

If[rethrow,Throw[result/.
seq->Sequence]];
result
]

SetAttributes[parseInContext,HoldFirst];
Options[parseInContext]=
{
LocalizingContext->"MyLocalizingContext`",
DefaultImportedContexts:>{},

ExtraImportedContexts:>{}
};
parseInContext[code_,opts:OptionsPattern[]]:=
Module[
{
result,
context=OptionValue[LocalizingContext],
defcontexts=OptionValue[DefaultImportedContexts],
extraContexts=OptionValue[ExtraImportedContexts],
allContexts

},
allContexts={Sequence@@defcontexts,Sequence@@extraContexts};
Block[{$ContextPath},
CleanUp[
BeginPackage[context];Needs/@allContexts;result=code,
EndPackage[]
];
result
]
];



ClearAll[inPrivateContext];
SetAttributes[inPrivateContext,HoldAll];
inPrivateContext[code_]:=
CleanUp[Begin["`Private`"];code,End[]];


ClearAll[parseInPrivateSubcontext];
SetAttributes[parseInPrivateSubcontext,HoldFirst];

parseInPrivateSubcontext[code_,opts:OptionsPattern[]]:=
parseInContext[inPrivateContext[code],opts];


ClearAll[withTemporaryContext];
SetAttributes[withTemporaryContext,HoldRest];
withTemporaryContext[context_String,{contVar_Symbol,code_}]:=
Block[{contVar=context},
With[{names=context<>"Private`*",remove=If[Names[#1]=!={},Remove[#1]]&},
CleanUp[remove[names];code,remove[names]]

]
];


ClearAll[withHeldCodeInTemporaryContext];
Options[withHeldCodeInTemporaryContext]=
{
TemporaryContextName->"TemporaryContext`",
ExtraImportedContexts:>{"Global`"}
};

SetAttributes[withHeldCodeInTemporaryContext,HoldFirst];
withHeldCodeInTemporaryContext[
{var_Symbol,code_},fname_,opts:OptionsPattern[]
]:=
Module[{tempcont},
Block[{var},
withTemporaryContext[
OptionValue[TemporaryContextName],
{
tempcont,

parseInPrivateSubcontext[
var=loadFile[fname];code,
LocalizingContext->tempcont,
ExtraImportedContexts->OptionValue[ExtraImportedContexts]
]
}
]
]
];


The code contains a number of macros,some of which are general (like WReach's CleanUp and a few others), while others specialize the generic ones to the more narrow goals we set here.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...