Skip to main content

Getting a usable expression tree


I need to get the expression tree for some expression.


expr //TreeForm

The above grabs the expression tree but it isn't in some sort of usable format. Just an image.


Level[expr, {-1}, "Heads"->True]


This does a depth first traversal of the expression tree and does give me a list of all items in the expression tree. The issue with this is that:


expr = a+b*3*c+d
Level[expr, {-1}, "Heads"->True]
{Plus, a, Times, 3, b, c, d}

and now you can see that because of the location of d I have no information on what goes where with Levels.


So the question is, is there a way for me to get the expression tree in some format where I can actually tell where everything is supposed to go?


Acceptable formats would be of the form of {operator/operatorFunctionName, symbol/value, {operator/operatorFunctionName, symbol/value, {... continues as far as can go}}, moreSymbolsRelatedToFirstOperation}


OR



{operator/operatorFunctionName, operator/operatorFunctionName, ...} {{symbol/valueForFirstOperator, ...}, {symbol/valueForSecondOperator,...}, ...}


OR any other similar format.



Answer



Please let me know if this is moving in the right direction:


expr = a + b*3*c + d;

Replace[expr, h_[x___] :> {x}, {0, -1}]


{a, {3, b, c}, d}


Given that heads are lost here, perhaps you want something like:


Replace[expr, h_[x___] :> {h, x}, {0, -1}]


{Plus, a, {Times, 3, b, c}, d}

If this is close to what you a related question that you should read is:
List manipulation to build a functional expression





Note: you may be tempted to try to simplify the code above by using ReplaceAll (short form /.) but you will find that it doesn't work. That's because the order of traversal is the opposite of Replace, despite the similar names.


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....