Skip to main content

equation solving - Using DSolve to solve for x[t,parameter]


I'm trying to solve an ODE with two independent variables (a cannon firing from a cliff incorporating wind resistance dependent on velocity). I've tried the following for the x-component:


NDSolve[{x''[t, θ] == -0.2*x'[t, θ]/2.30, x'[0, θ] == 10.8*Cos[θ], x[0, θ] == 0},
x[t, θ], t]

Assuming my algebra is correct, how do I properly phrase this input to give me x[t, θ]?



Answer



If :


sol = DSolve[{D[x[t, th], {t, 2}] == -0.2*D[x[t, th], t]/2.30, 
Derivative[1, 0][x][0, th] == 10.8*Cos[th], x[0, th] == 0}, x[t, th], t];


then you can use the solution as :


Plot3D[x[t, th] /. sol, {t, 0, 10}, {th, -Pi, Pi}]

enter image description here


Some checks :


x[t, th] /. First[sol] /. t -> 0
(* 0. *)

Simplify[D[sol[[1, 1, 2]], t] /. t -> 0]

(* 10.8 Cos[th] *)

A more general and robust way to keep the solution for future use is to define :


Remove[sol]
sol[t_, th_] = DSolve[{D[x[t, th], {t, 2}] == -0.2*D[x[t, th], t]/2.30,
Derivative[1, 0][x][0, th] == 10.8*Cos[th], x[0, th] == 0}, x[t, th], t][[1, 1, 2]];

which you can now use as any other function. For instance :


Manipulate[Plot[sol[t, th], {t, 0, 10}], {th, 0, Pi/2}]

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...