Skip to main content

equation solving - Using DSolve to solve for x[t,parameter]


I'm trying to solve an ODE with two independent variables (a cannon firing from a cliff incorporating wind resistance dependent on velocity). I've tried the following for the x-component:


NDSolve[{x''[t, θ] == -0.2*x'[t, θ]/2.30, x'[0, θ] == 10.8*Cos[θ], x[0, θ] == 0},
x[t, θ], t]

Assuming my algebra is correct, how do I properly phrase this input to give me x[t, θ]?



Answer



If :


sol = DSolve[{D[x[t, th], {t, 2}] == -0.2*D[x[t, th], t]/2.30, 
Derivative[1, 0][x][0, th] == 10.8*Cos[th], x[0, th] == 0}, x[t, th], t];


then you can use the solution as :


Plot3D[x[t, th] /. sol, {t, 0, 10}, {th, -Pi, Pi}]

enter image description here


Some checks :


x[t, th] /. First[sol] /. t -> 0
(* 0. *)

Simplify[D[sol[[1, 1, 2]], t] /. t -> 0]

(* 10.8 Cos[th] *)

A more general and robust way to keep the solution for future use is to define :


Remove[sol]
sol[t_, th_] = DSolve[{D[x[t, th], {t, 2}] == -0.2*D[x[t, th], t]/2.30,
Derivative[1, 0][x][0, th] == 10.8*Cos[th], x[0, th] == 0}, x[t, th], t][[1, 1, 2]];

which you can now use as any other function. For instance :


Manipulate[Plot[sol[t, th], {t, 0, 10}], {th, 0, Pi/2}]

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...