Skip to main content

data - Fitting multiple datasets to the same nonlinear model


Perhaps a rather simple question, but the suggested questions seem to all be covering something slightly different. What I have can be described as follows.


One takes a dataset, call it Data; it has dimensions 10 by 1000 by 2 lets say, which is to say it is 10 arrays of {x,y} data of length 1000.



Now I know the following about it: it behaves according to a model Model[x,a,b,c]. Moreover, all 10 arrays have the same a,bbut not the same cparameter. What I am interested in is how one does a NonLinearModelFit over such a dataset, fitting a,b,c1...c10 in a single go. I should note that I have an initial value array cinit of dimensions 10 as well.


One way I thought of that should in principle work is with KroneckerDelta; I could prepend each dataset with some coordinate that I could use in addition to x and then make a model with the deltafunctions, but this feels very sloppy. There should be an easy way, should there not?


I would post the full model and the data I am working with, but not only is it a big dataset, the parameters and the model are still very much undetermined. I think it would make the question rather offtopic as it is my job to figure out the parameters, not you. So I thought it would make sense to just stick to the concept.



Answer



Here is a crude way to do it. First the dataset id is appended to the 1000 x 10 x 2 data array. Then the function you have is modified to create a dummy variable vector and the dot product is used to select the parameter of interest: c1, c2, c3,...., or c10.


(* Number of different values of c *)
nc = 10;
(* Number of observations per dataset *)
n = 1000;


(* Create some data for a 1000 x 10 x 2 array *)
xx = Table[i/n, {i, n}];
data = Table[
Transpose[{xx,
5 + 2 xx + xx^2 + RandomVariate[NormalDistribution[0, 1], n]}], {i, nc}];

(* Add in dataset number: 1 through nc *)
data2 = Flatten[
Table[{i, data[[i, j, 1]], data[[i, j, 2]]}, {i, nc}, {j, n}], 1];


model[x_, a_, b_, i_, c_] := Module[{d, j},
(* Create dummy variables *)
d = Table[If[j == i, 1, 0], {j, Length[c]}];
(* Determine function value *)
a + b x + (c.d) x^2];

nlm = NonlinearModelFit[data2,
model[x, a, b, z, nc, {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}],
{a, b, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}, {z, x}];
nlm["BestFitParameters"]

(* {a -> 4.99484, b -> 1.93603, c1 -> 1.18239, c2 -> 1.0829,
c3 -> 1.21282, c4 -> 1.06046, c5 -> 1.13936, c6 -> 1.07549,
c7 -> 1.01086, c8 -> 0.960816, c9 -> 0.979848, c10 -> 1.03909} *)

But note that I get a warning:



Experimental`NumericalFunction::dimsl: {x} given in {z,x} should be a list of dimensions for a particular argument.



Also, besides assuming common values for a and b , you are also assuming a common error variance. Residuals should be checked to see if there are any departures from that assumption or if a more complex error structure is warranted.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...