Skip to main content

programming - How does thing["property"] syntax work?


Many builtin "things" support the (usually undocumented) syntax thing["property"], and usually the available properties can be listed using thing["Properties"] (thing["Methods"] might work too).


Examples include InterpolatingFunction, FittedModel, DateObject, a lot of mesh region stuff and FEM stuff.


These symbols act essentially like objects, used only as arguments to other functions that access their properties (e.g. PredictorFunction), or whose properties are accessible with DownValue syntax (e.g. ClassifierMeasurements).


Moreover, these functions, like PredictorFunction[] are returned with this frequently encountered DisplayForm:


enter image description here



These "object-like" symbols are typically (nested) Associations wrapped in their symbol, the FullForm of the PredictorFunction above is:


PredictorFunction[Association[Rule["Basic",Association[Rule["ExampleNumber",4],Rule["FeatureNumber",1],Rule["ScalarFeature",True]]],Rule["CommonFeaturePreprocessor",MachineLearning`PackageScope`Preprocessor["InputMissing",List[List[4]]]],Rule["PredictionPreprocessor",MachineLearning`PackageScope`Preprocessor["Standardize",List[5.25`,2.7233557730613653`]]],Rule["ProbabilityPostprocessor",Identity],Rule["Combiner",MachineLearning`PackageScope`Combiner["First"]],Rule["Decision",Association[Rule["Prior",Automatic],Rule["Utility",Function[DiracDelta[Plus[Slot[2],Times[-1,Slot[1]]]]]],Rule["Threshold",0],Rule["PerformanceGoal",Automatic]]],Rule["Models",List[Association[Rule["Method","LinearRegression"],Rule["Theta",List[List[0.`],List[0.9954921542867711`]]],Rule["DistributionData",List[NormalDistribution,List[0.11611695002854867`]]],Rule["L1Regularization",0],Rule["L2Regularization",0.00001`],Rule["ExtractedFeatureNumber",1],Rule["FeatureIndices",List[1]],Rule["FeaturePreprocessor",MachineLearning`PackageScope`Preprocessor["Sequence",List[MachineLearning`PackageScope`Preprocessor["Standardize",List[List[4.`],List[Times[2,Power[Rational[5,3],Rational[1,2]]]]]],MachineLearning`PackageScope`Preprocessor["PrependOne"]]]]]]],Rule["FeatureInformation",List[Association[Rule["Name","feature1"],Rule["Type","Numerical"],Rule["Sparsity",0.`],Rule["Quantiles",List[1,1,1,3,3,5,5,7,7]]]]],Rule["PredictionInformation",Association[Rule["Quantiles",List[2.`,2.`,2.`,4.5`,4.5`,6.`,6.`,8.5`,8.5`]],Rule["Name","value"],Rule["Sparsity",0.`]]],Rule["Options",List[Rule[Method,List[Rule[List[1],List["LinearRegression",Rule["L1Regularization",0],Rule["L2Regularization",0.00001`]]]]]]],Rule["Log",Association[Rule["TrainingTime",0.039456`],Rule["MaxTrainingMemory",186792],Rule["DataMemory",424],Rule["FunctionMemory",8936],Rule["LanguageVersion",List[10.1`,0]],Rule["Date","Tue 11 Aug 2015 18:32:58"],Rule["ProcessorCount",4],Rule["ProcessorType","x86-64"],Rule["OperatingSystem","MacOSX"],Rule["SystemWordLength",64],Rule["Events",List[Association[Rule["Event","ParseData"],Rule["StartTime",0.000109`2.1879414957726175],Rule["ElapsedTime",0.000446`],Rule["MaxMemoryUsed",15176],Rule["StartMemory",3096],Rule["EndMemory",4144]],Association[Rule["Event","TrainModel"],Rule["StartTime",0.001426`3.3046345233478402],Rule["ElapsedTime",0.037726`],Rule["MaxMemoryUsed",164080],Rule["StartMemory",9096],Rule["EndMemory",13824]]]]]]]]

How can I recreate this sort of functionality with my own objects and functions? Are there any methodologies for writing down-values of symbols like this?


Example:


Here's a mini demo of what I'm talking about:


c = note[<|"Pitch"->pitch[0],"Duration"->1|>];
e = note[<|"Pitch"->pitch[4],"Duration"->1|>];
g = note[<|"Pitch"->pitch[7],"Duration"->1|>];
cc = chord[<|"Notes"->{c,e,g}|>];


I'd have to do something ugly like this:


In[2]:= c_chord[property_String] := (c[[1]])[property]

To get this to work:


In[3]:= cc["Notes"]
Out[3]= {note[<|"Pitch" -> pitch[0], "Duration" -> 1|>],
note[<|"Pitch" -> pitch[4], "Duration" -> 1|>],
note[<|"Pitch" -> pitch[7], "Duration" -> 1|>]}

Answer





How can I recreate this sort of functionality with my own objects and functions? Are there any methodologies for writing down-values of symbols like this?



If you want to know how to get a similar output format, here's a silly toy example:


(* The icon isn't really that important *)
icon = Plot[Sin[x], {x, -5, 5}, Axes -> False, Frame -> True,
ImageSize -> Dynamic[{Automatic, 3.5 (CurrentValue["FontCapHeight"] / AbsoluteCurrentValue[Magnification])}],
GridLines -> None, FrameTicks -> None, AspectRatio -> 1,
FrameStyle -> Directive[Opacity[0.5], Thickness[Tiny], RGBColor[0.368, 0.507, 0.71]]];


(* SummaryItemAnnotation and SummaryItem are the styles used in the labels *)
label[lbl_, v_] := Row[{Style[lbl <> ": ", "SummaryItemAnnotation"], Style[ToString[v], "SummaryItem"]}];

(* Set up formatting *)
BigStupidFunction /: MakeBoxes[ifun : BigStupidFunction[s1_, s2_, hs1_, hs2_], fmt_] :=
BoxForm`ArrangeSummaryBox[
BigStupidFunction, ifun, icon,
{label["Some stuff", s1], label["Other stuff", s2]},
{label["Hidden stuff 1", hs1], label["Hidden stuff 2", hs2]},
fmt

];

Now the output format of BigStupidFunction will be nicely boxed up like InterpolatingFunction.


enter image description here


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],