Skip to main content

plotting - Implementing GeoCallout?


Building off of a related question, I'm looking for a robust way of using Callouts for multiple locations in Geography. For example, I want to plot cities and their names with arrows and text:



data = CloudGet @ CloudObject[
"https://www.wolframcloud.com/objects/cb8f1216-74dd-463e-85a4-e976b6fd3fd4"];
GeoListPlot[MapThread[
Callout[#1, #2, CalloutMarker -> "Arrow", "CalloutStyle" -> Red] &,
data], GeoBackground -> "ReliefMap", GeoRange -> "World"
]

enter image description here


Clearly, Callout's are not supported in GeoGraphics (and don't issue any warnings if you didn't know that). However, my approach is to fake it by using Callout's in a ListPlot and overlay on top of a blank GeoGraphics map background:


bg = GeoListPlot[{}, GeoBackground -> "ReliefMap", 

GeoRange -> "World"];
plain = {Reverse@*First /@ data[[1]], data[[2]]};
Overlay[{bg,
ListPlot[MapThread[
Callout[#1, #2, "CalloutStyle" -> Directive[Thick, Red]] &,
plain], PlotRange -> {{-180, 180}, {-90, 90}}, Axes -> None,
PlotRangePadding -> Scaled[0]]}]

enter image description here


I can't get things to line up exactly for various GeoProjection's, and so that's what I'm looking for help with.



Update for Comment


It is different from this related question, because that solution doesn't look good for some reason here:


enter image description here


Final Update


Thanks @carlwoll, that solves it. However, my formatting of the Mollweide project isn't working as expected. Specifically, I'd like higher resolution (and less label collision if possible). But setting GeoZoomLevel -> 4 gets wiped out in the Show. I'd also like the callouts to look like this last example from ref/CalloutMarker:


ListLinePlot[{Callout[Fibonacci[Range[6]], "Fibonacci", {4, 10}, 5, 
CalloutMarker -> Arrowheads[0.04], CalloutStyle -> Red],
Table[LucasL[n], {n, 6}]}]

enter image description here



Here's your code with my formatting tweaks:


bg = GeoListPlot[{}, GeoBackground -> "ReliefMap", 
GeoRange -> "World", GeoProjection -> "Mollweide",
GeoZoomLevel -> 4];
plain = {First@
GeoGridPosition[GeoPosition[data[[1, All, 1]]], "Mollweide"],
data[[2]]};
Show[bg, ListPlot[
MapThread[
Callout[#1, #2, Appearance -> "CurvedLeader", LeaderSize -> 20,

CalloutMarker -> "Arrow",
LabelStyle ->
Directive[FontFamily -> "Verdana", FontSize -> 12,
FontColor -> Red], CalloutStyle -> Red] &, plain],
Axes -> None, PlotRangePadding -> Scaled[0],
PlotStyle -> Directive[PointSize[0.005], Red]],
Options[bg, PlotRange], ImageSize -> 500]

enter image description here



Answer




Just use Show instead of Overlay:


Show[
bg,
ListPlot[
MapThread[
Callout[#1,#2,"CalloutStyle"->Directive[Thick,Red]]&,
plain
],
PlotRange->{{-180,180},{-90,90}},
Axes->None,

PlotRangePadding->Scaled[0]
]
]

enter image description here


An example using a different projection, where the conversion to grid coordinates is more complicated than just using Reverse:


bg = GeoListPlot[
{},
GeoBackground->"ReliefMap",
GeoRange->"World",

GeoProjection->"Mollweide"
];
plain = {
First @ GeoGridPosition[GeoPosition[data[[1, All, 1]]], "Mollweide"],
data[[2]]
};
Show[
bg,
ListPlot[
MapThread[Callout[#1, #2, "CalloutStyle"->Directive[Thick,Red]]&, plain],

Axes->None, PlotRangePadding->Scaled[0]
],
Options[bg, PlotRange]
]

enter image description here


For your updated question


Sometimes some of the other GeoGraphics options need to be included in the Show call, so simplest would be to include them all. This will fix your GeoZoomLevel issue. As for improving label collisions, the size of the ListPlot will control how many callouts are generated. So, adjust the size with the ImageSize option. Examples:


bg = GeoListPlot[{}, GeoBackground -> "ReliefMap", 
GeoRange -> "World", GeoProjection -> "Mollweide",

GeoZoomLevel -> 4
];
plain = {
First@GeoGridPosition[GeoPosition[data[[1, All, 1]]], "Mollweide"],
data[[2]]
};

Your example, including all GeoGraphics options:


Show[
bg,

ListPlot[
MapThread[
Callout[#1, #2, Appearance -> "CurvedLeader",
LeaderSize -> 20, CalloutMarker -> "Arrow",
LabelStyle -> Directive[FontFamily -> "Verdana", FontSize -> 12, FontColor -> Red],
CalloutStyle -> Red
]&,
plain
],
Axes -> None, PlotStyle -> Directive[PointSize[0.005], Red]

],
Options[bg],
ImageSize -> 500
]

enter image description here


Shrink the ListPlot image size to reduce the number of callouts:


Show[
bg,
ListPlot[

MapThread[
Callout[#1, #2, Appearance -> "CurvedLeader",
LeaderSize -> 20, CalloutMarker -> "Arrow",
LabelStyle -> Directive[FontFamily -> "Verdana", FontSize -> 12, FontColor -> Red],
CalloutStyle -> Red
]&,
plain
],
Axes -> None, PlotStyle -> Directive[PointSize[0.005], Red],
ImageSize -> 250

],
Options[bg],
ImageSize -> 500
]

enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...