Skip to main content

Nested Map and Apply


There are some other questions on this topic but I could not get an answer from reading them. What I want to do is use Apply on some of the arguments of a function, h, and then Map on another argument. Here is what I attempted:


Map[Apply[{h[#, ##]} &, {a, b}] &, {1, 2}]
(* ===>{{h[a, a, b]}, {h[a, a, b]}} *)


The elements I want to Map over never get used. But this is not what I want. I want just


{h[1,a,b],h[2,a,b]}

I could use Table instead of Map but it's slow (slower than just using Apply twice) and I was hoping Map would be faster.


I understand that Apply is using both # and ## but I'm not sure what syntax is correct to force the first Slot to be used by Map instead of Apply.


EDIT: This is more like what I actually want to do:


Map[Apply[{h1[#, ##],h2[#, ##]} &, {RandomReal[], RandomReal[]}] &, {1, 2}]

So I want output as



{{h1[1, a1,b1], h2[1, a1,b1]},{h1[2, a2,b2], h2[2, a2,b2]}}

where I a's and b's are the random numbers. So to get this, I think the order of Apply and Map is important.



Answer



One option is to separate the slots by using an explicit Function for the second argument


Map[Function[arg, Apply[{h[arg, ##]} &, {a, b}]], {1, 2}]

Regarding your updated question. The approach is the same


Map[Function[arg, Apply[{h1[arg, ##], h2[arg, ##]} &, 
{RandomReal[], RandomReal[]}]], {1, 2}]

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....