Skip to main content

plotting - How to plot the field of values (numerical range) of a matrix


I found some difficulties in plotting the set $$W(\mathbb{A}):=\{\langle x,\mathbb{A}x \rangle \mid \|x\|=1\},$$ where $\mathbb{A}\in\mathbb{C}^{n,n}$ is a given complex matrix and $\langle\cdot,\cdot\rangle$ stands for the Euclidean inner product in $\mathbb{C}^{n}$. Is there any (perhaps straightforward) way to visualize $W(\mathbb{A})$ in Mathematica?


A comment: I am particularly interested in the localization of $W(\mathbb{A})$ in $\mathbb{C}$ with emphasis on its boundary and its shape. I am looking for a procedure to give a plot of $W(\mathbb{A})$ without any additional assumptions on the matrix $\mathbb{A}$. The size of $\mathbb{A}$, however, need not be too big, say $n\leq100$.


Remark: $W(\mathbb{A})$ is a convex subset of $\mathbb{C}$ located in the disc $|z|\leq\|\mathbb{A}\|$ (the spectral norm of $\mathbb{A}$).



Answer



The algorithm in the article mentioned above tries to find the boundary of the numerical range "from outside" and therefore may give more accurate results.


My naive Mathematica implementation is:


lsEigenvalue[H_] := Module[{emax, emaxspace, emin, eminspace, es},
(* Find the largest and smallest eigenvalue of a Hermitian matrix H together with the corresponding eigenspace (naive implementation) *)


es = Sort[Eigenvalues[H], Re[#1] < Re[#2] &];
emin = First[es];
emax = Last[es];
eminspace = Orthogonalize[NullSpace[H - emin*IdentityMatrix[Length[H]]]];
emaxspace = Orthogonalize[NullSpace[H - emax*IdentityMatrix[Length[H]]]];
Return[{{emin, eminspace}, {emax, emaxspace}}]
]

plotNR[A_, n_] := Module[{t = 0., td = 2 π/n, Ht, Kt, points = {}, segments = {}, emax, emaxspace, emin, eminspace, vp, vm, Q, R},
PrintTemporary[ProgressIndicator[Dynamic[t], {0, 2 π}]];

(* data for numeric range plot *)
While[t < 2 π,
Ht = (Exp[-I t]*A + Exp[I t]*ConjugateTranspose[A])/2;
{emax, emaxspace} = Last[lsEigenvalue[Ht]];

Which[(* One dimensional eigenspace *)
Length[emaxspace] == 1,

vp = First[emaxspace];
AppendTo[points, Conjugate[vp].A.vp],


(* Two or greater dimension -- almost does not happen? *)

Length[emaxspace] > 1,

Kt = (Exp[-I t]*A - Exp[I t]*ConjugateTranspose[A])/(2 I);
Q = Transpose[emaxspace];
R = ConjugateTranspose[Q].Kt.Q;

{{emin, eminspace}, {emax, emaxspace}} = lsEigenvalue[R];


vp = Q.First[emaxspace];
vm = Q.First[eminspace];

AppendTo[segments, {Conjugate[vm].A.vm, Conjugate[vp].A.vp}],

(* Fail *)
True,
Print["Error"]
];


t = t + td;
];
Return[{DeleteDuplicates[points], DeleteDuplicates[segments]}]
]

An example result for a $2\times 2$ matrix


$$ \begin{pmatrix} -1 & i \\ 2 & 3i \end{pmatrix}. $$


Red dots are computed by randomly sampling vectors and computing the quadratic form, blue dots are computed by the algorithm above.


enter image description here



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...