Skip to main content

graphics3d - How to make this 3D animation


How to make an animation of following gif by using Mathematica?


enter image description here



Answer



You can use the new RandomPoint- function to sample points from a sphere and use the second argument of Text to position some text in 3D. Text will automatically make the string face towards the viewer/camera for you.



pts = RandomPoint[Sphere[{0, 0, 0}], 100];
Text["test", #] & /@ pts // Graphics3D[#, SphericalRegion -> True, Boxed -> False] &

gif




Another approach is instead of rotating the entire graphic (as done above) to rotate the points themselves via RotationTransform. This enables the use of coordinate dependent color and size. An appropriate transformation could be


r[angle_?NumericQ, pivot : {_, _}] := RotationTransform[angle Degree, pivot];

and can be used as follows to archive something closer to what you are looking for with color and size scaling done in respect to the y-coordinate


Graphics3D[(Style[Text["test", #], FontSize -> 14 - 5*(#[[2]] + 1), 

FontColor -> Blend[{Black, White}, #[[2]]]] & /@
r[0, {{0, 0.2, 1}, {1, 0, 0}}] /@ pts), BoxRatios -> {1, 1, 1},
Boxed -> True, Axes-> True, AxesLabel -> {"x", "y", "z"}]

picture2


This can be animated for instance like this


Animate[Graphics3D[(Style[Text["test", #], 
FontSize -> 14 - 5*(#[[2]] + 1),
FontColor -> Blend[{Black, White}, #[[2]]]] & /@
r[angle, {{0, 0, 1}, {0.2, -1, 0}}] /@ pts),

BoxRatios -> {1, 1, 1}, SphericalRegion -> True, Boxed -> False,
ViewPoint -> Front], {angle, 0, 360}]

final result


To archive your desired look you might have to play around a bit with the color- and size scaling


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.