Skip to main content

numerical integration - Elliptic integrals


In trying to reproduce results from one paper I stumbled upon a problem with definition of some elliptic integrals (this is my guess of what could be the problem).


I will first present in a simplified form what I am trying to calculate, details are in the original paper (PRL 99, 226801, see Google Scholar for PDF)





The goal is to compute the following 2D integral


$$I(k)=-\iint_{\Omega_c}\frac{\mathrm{d}^2\vec q}{4\pi q}\left(1-\cos\theta(\vec k,\vec {k}-\vec {q})\right),$$


where $\theta(\vec a,\vec b)$ is the angle between $\vec a$ and $\vec b$, $q=|\vec q|$. For those who would like to compare with the paper, this is essentially Eq.(2a), where for simplicity I set $e=\kappa=1$, selected the case $s=1$ and substituted all the definitions into one equation.


The integration domain is $\Omega_c: |k|\le k_c$, where $k_c$ is a positive number.


The analytic result is known to be [cf. Eq. (3a)]:


$$I(k)=\tfrac{1}{\pi}k_c\left[h\!\left(k/k_c\right)-f\!\left(k/k_c\right)\right],\quad I(0)=-\tfrac{1}{2}k_c.$$


Assuming, we want to know the result for $k, there are following definitions


$$f(x)=E(x),\quad h(x)=x\left[\tfrac{\pi}{4}\log(4/x)-\tfrac{\pi}{8}\right] -x\int_{0}^x\!\mathrm{d}y\, y^{-3}\left[K(y)-E(y)-\tfrac{\pi}{4}y^2\right].$$ Here $K(x)$ and $E(x)$ are the complete elliptic integral of the first and second kinds, respectively. I do not know, how this integral can be computed, neither by hand or with mathematica...


What is disturbing is that I was not able verify the integral numerically.


In the following, I will first rewrite all the equations in MA language.



i[1]=Integrate[EllipticK[y^2]-EllipticE[y^2],{y,0,1/x},
Assumptions->x>1]
i[2]=Integrate[(EllipticK[y^2]-EllipticE[y^2]-π/4 y^2)/y^3,{y,0,x},
Assumptions->0<=x<=1]
f[x_]=EllipticE[x^2]
h[x_]=x(π/4Log[4/x]-π/8)-x i[2]

Notice, it takes a while to compute i[2]. Now, we will be interested in the $\Delta I(k)=I(k)-I(0)$ function


xi[k_,kc_]:=kc/π(h[k/kc]-f[k/kc])
Δxi[k_,kc_]:=xi[k,kc]+kc/2


Now we define the numerical integral (adding a small cut-off a) transforming it to polar coordinates and assuming $\vec k\parallel \vec e_x$


Δni[k_?NumericQ,kc_?NumericQ,a_?NumericQ]:=1/(4 π) NIntegrate[((k- q Cos[θ])/Sqrt[k^2+q^2-2 k q Cos[θ]]),{q,a,kc},{θ,0,2π},PrecisionGoal->4]

and compare


dataI=Table[{k,Δni[k,30,10^-5]},{k,0.1,2,0.1}]
Plot[Δxi[k,30],{k,0,2},Epilog->{PointSize[Medium],Point[dataI]},PlotRange->{0,2.3}]

enter image description here


The points should exactly fall onto the analytic curve, but they are not... I would be happy with any of the answers:




  1. showing how the integral can be computed analytically with MA starting from the definition (basically confirming that my interpretation of the formula in the paper is correct),

  2. fixing a problem with MA numerics.


Notice, I can easily verify Fig.1 of that paper with MA. But the integral considered here is not plotted there.



Answer



The article "Density Dependent Exchange Contribution to $\partial \mu/\partial n$ and Compressibility in Graphene" by E.H. Hwang,Ben Yu-Kuang Hu, and S. Das Sarma has a typo in the definition of $h$ (there must be a plus before $\frac {\pi}{8}$). After correction, the results match (I wrote down the finished results for the integrals, so as not to waste time every time to calculate them)


(*i[1]=Integrate[EllipticK[y^2]-EllipticE[y^2],{y,0,1/x},Assumptions\
\[Rule]x>1]
i[2]=Integrate[(EllipticK[y^2]-EllipticE[y^2]-\[Pi]/4 \

y^2)/y^3,{y,0,x},Assumptions\[Rule]0\[LessEqual]x\[LessEqual]1]*)

i1[x_] := (\[Pi] (-HypergeometricPFQ[{-(1/2), 1/2, 1/2}, {1, 3/2}, 1/
x^2] + HypergeometricPFQ[{1/2, 1/2, 1/2}, {1, 3/2}, 1/x^2]))/(
2 x)
i2[x_] :=
3/256 \[Pi] x^2 (HypergeometricPFQ[{1, 1, 3/2, 5/2}, {2, 3, 3},
x^2] + 3 HypergeometricPFQ[{1, 1, 5/2, 5/2}, {2, 3, 3}, x^2])
f[x_] := If[x <= 1, EllipticE[x^2],
x EllipticE[1/x^2] - (x - 1/x) EllipticK[1/x^2]]

h[x_] := If[x <= 1, x (\[Pi]/4 Log[4/x] + \[Pi]/8) - x i2[x], x i1[x]]

xi[k_, kc_] := kc/\[Pi] (h[k/kc] - f[k/kc])
\[CapitalDelta]xi[k_, kc_] := xi[k, kc] + kc/2

\[CapitalDelta]ni[k_?NumericQ, kc_?NumericQ, a_?NumericQ] :=
1/(4 \[Pi]) NIntegrate[((k - q Cos[\[Theta]])/
Sqrt[k^2 + q^2 - 2 k q Cos[\[Theta]]]), {q, a, kc}, {\[Theta], 0,
2 \[Pi]}]


dataI = Table[{k, \[CapitalDelta]ni[k, 30, 10^-10]}, {k, 0.1, 2, 0.1}]
Plot[\[CapitalDelta]xi[k, 30], {k, 0, 2},
Epilog -> {PointSize[Medium], Point[dataI]}, PlotRange -> {0, 2.3}]

Figure 1


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....