Skip to main content

functions - FullSimplify does not work on this expression with no unknowns


I can't reproduce this simple example from Habrat, 2010 ("Mathematica : a Problem-Centered Approach"). It is supposed to demonstrate the functionality of FullSimplify, however I can't make it work in Mathematica 9. When I try this:


FullSimplify[ Cot[ (5 Pi)/22 ] + 4 Sin[ (2 Pi)/11 ]]

Mathematica 9 returns the input unchanged:


Cot[ (5 Pi)/22 ] + 4 Sin[ (2 Pi)/11 ]

As shown in the book however, I would rather have expected Sqrt[11]. On the other trying


FullSimplify[ Cot[ (5 Pi)/22 ] + 4 Sin[ (2 Pi)/11 ] == Sqrt[11] ]


Mathematica 9 returns


True

so why not return Sqrt[11] in the first place?



Answer



Before Mathematica 9 FullSimplify[ Cot[ (5 Pi)/22 ] + 4 Sin[ (2 Pi)/11 ]] yielded simply Sqrt[11] while in the newest version we should play a bit with ComplexityFunction. For some reason the ComplexityFunction behavior in FullSimplify has been changed. One can guess that it is just a different gauge of this option. To shed light on this issue let's define the following function :


cfs[n_][e_] :=  n Count[e, _Sin, {0, Infinity}] + LeafCount[e]

After playing a bit we can figure out the threshold values :



FullSimplify[ Cot[(5 Pi)/22] + 4 Sin[(2 Pi)/11], ComplexityFunction -> #] & /@ {
cfs[5], cfs[6], cfs[37], cfs[38] } // Column

enter image description here


In Mathematica 8 and earlier all these complexity functions yield Sqrt[11]. We could find this threshold therein :


FullSimplify[Cot[(5 Pi)/22] + 4 Sin[(2 Pi)/11], ComplexityFunction -> #] & /@ {
cfs[-10], cfs[-9]} // Column

enter image description here


I.e. we have a direct jump between the final results in earlier versions while in ver.9 there are intermediate values where cfs provided an intermediate result. So in the newer version ComplexityFunction is more customizable and therfore it is advantageous.



Another possibility in ver. 9 to get Sqrt[11] might be e.g. :


FullSimplify[ Cot[(5 Pi)/22] + 4 Sin[(2 Pi)/11], TransformationFunctions -> RootReduce]

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...