Skip to main content

plotting - Mathematica taking forever to compute


I want to simulate the fresnel diffraction through circular aperture.But mathematica is taking forever to calculate.Here is my code.


  f[x_?NumericQ, y_?NumericQ, d_?NumericQ, p_?NumericQ, t_?NumericQ] := 
NIntegrate[(\[Zeta]*(Exp[
I*20000 ((d^2 + \[Zeta]^2)^(0.5) + ((p^2 + (x - \[Zeta]*
Cos[t])^2 + (y - \[Zeta]*
Sin[t])^2)^(0.5)))]))/(d^2 + \[Zeta]^2)^(0.5), {\
\[Zeta], 0, 0.008}]

w[x_?NumericQ, y_?NumericQ, d_?NumericQ, p_?NumericQ] :=
NIntegrate[f[x, y, d, p, t], {t, 0, 2*Pi}]
g[x_, y_, d_, p_] := (Abs[w[x, y, d, p]])^2
Plot3D[g[x, y, 0.004, 20], {x, -100, 100}, {y, -100, 100},
PlotRange -> Full]

What's the way out? *Specs:i5 7th gen intel processor,12 gb ram



Answer



Let's compile the integrand into a Listable CompiledFunction:


cintegrand = Block[{x, y, d, p, ζ, t},

With[{code =
N[(ζ (Exp[I 20000 ((d^2 + ζ^2)^(1/2) + ((p^2 + (x - ζ Cos[t])^2 + (y - ζ Sin[t])^2)^(1/2)))]))/(d^2 + ζ^2)^(1/2)]
},
Compile[{{x, _Real}, {y, _Real}, {d, _Real}, {p, _Real}, {ζ, _Real}, {t, _Real}},
code,
CompilationTarget -> "C",
RuntimeAttributes -> {Listable},
Parallelization -> True
]
]

];

Next, pick a Gauss quadrature rule for high order polynomials (the integrand is very smooth but quite oscillatory):


{pts, weights, errweights} = NIntegrate`GaussRuleData[9, $MachinePrecision];

Divide the integration domain into m×n rectangles and set up the quadrature points and weights:


m = 20;
n = 20;
ζdata = Partition[Subdivide[0., 0.008, m], 2, 1];
tdata = Partition[Subdivide[0., 2 Pi, n], 2, 1];

{ζ, t} = Transpose[Tuples[{Flatten[ζdata.{1. - pts, pts}], Flatten[tdata.{1. - pts, pts}]}]];
ω = Flatten[KroneckerProduct[
Flatten[KroneckerProduct[Differences /@ ζdata, weights]],
Flatten[KroneckerProduct[Differences /@ tdata, weights]]
]];

Define the mapping that parameterizes the graph of OP's function w:


W = {x, y} \[Function] {x, y, Abs[cintegrand[x, y, 0.004, 20., ζ, t].ω]^2};

Compute the values of W on a 101×101 grid:



R = 2.;
data = Outer[W, Subdivide[-R, R, 100], Subdivide[-R, R, 100]]; // AbsoluteTiming // First


28.2668



Plot the result


ListPlot3D[Flatten[data, 1], PlotRange -> All, AxesLabel -> {"x", "y", "w"}]

enter image description here



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]