Skip to main content

numerical integration - Help For Solving Complicated Function


I have a piece-wise defined function:


a1[x_] = -0.30744074406928307` Cos[1.0065881856430914` x] + 
0.30744074406928307` Cosh[1.0065881856430914` x] +
Sin[1.0065881856430914` x] - Sinh[1.0065881856430914` x];


a2[x_] = 0.0384058298228355` Cos[1.7899950449175461` x] +
0.008258500530147013` Cosh[1.7899950449175461` x];

param = {u -> 6/11, y -> 5/11};

\[Phi][x] =
Piecewise[{{a1[x], 0 <= x <= u}, {a2[1 - x], u < x <= 1}}, {x, 0,
1}] /. param


I can plot it:


Plot[\[Phi][x], {x, 0, 1}]

enter image description here


Now I would like to calculate nPI. See here for more details: How to solve this equation numerically or analytically


So... I define some constants:


b = 1;
g = 1;
h = 1;


And try to compute nPI:


nom[n_?NumericQ] := 
NIntegrate[(b \[Phi][x])/(g - n \[Phi][x])^2 +
53/100*(h^(1/2) \[Phi][x])/(g - n \[Phi][x])^(3/2) +
53/200*(b^(1/4) \[Phi][x])/(g - n \[Phi][x])^(5/4), {x, 0, 1},
Method -> "LocalAdaptive"]

denom[n_?NumericQ] :=
NIntegrate[(2 b \[Phi][x]^2)/(g - n \[Phi][x])^3 +
159/200*(h^(1/2) \[Phi][x]^2)/(g - n \[Phi][x])^(5/2) +

53/160*(b^(1/4) \[Phi][x]^2)/(g - n \[Phi][x])^(9/4), {x, 0, 1},
Method -> "LocalAdaptive"]

nPI = FindRoot[n - nom[n]/denom[n] == 0, {n, 0.01},
Method -> {"Newton", "UpdateJacobian" -> 3}]

So far, it seems to work. But then I also want to change the constant b with respect to the x-position so I introduce b as:


b=Piecewise[{{5*10^-6, 0 <= x <= u}, {50*10^-6, u < x <= 1}}, {x, 0, 
1}] /. param;


But I get the error:



NIntegrate::inumr: The integrand (2 ([Piecewise] Times[<<2>>]+Times[<<2>>]+Sin[<<1>>]+Times[<<2>>] 0<=x<=6/11 1[Plus[<<2>>]] 6/11


)^2)/(1-0.01 Piecewise[{{<<2>>},{<<2>>}},{x,0,1}])^3+(159 ([Piecewise] <<1>>)^2)/(200 (1-0.01 Piecewise[{{<<2>>},{<<2>>}},{x,0,1}])^(5/2))+(53 ([Piecewise] Times[<<2>>]+Times[<<2>>]+Sin[<<1>>]+Times[<<2>>] 0<=x<=6/11 1[Plus[<<2>>]] 6/11


)^2)/(160 (1-0.01 Piecewise[{{<<2>>},{<<2>>}},{x,0,1}])^(9/4)) has evaluated to non-numerical values for all sampling points in the region with boundaries {{6/11,1}}.



Any help would be highly appreciated !!


For easier copy and paste:


a[x_] = -0.30744074406928307` Cos[1.0065881856430914` x] + 
0.30744074406928307` Cosh[1.0065881856430914` x] +

Sin[1.0065881856430914` x] - Sinh[1.0065881856430914` x];

b[x_] = 0.0384058298228355` Cos[1.7899950449175461` x] +
0.008258500530147013` Cosh[1.7899950449175461` x];
param = {u -> 6/11, y -> 5/11};

\[Phi][x] =
Piecewise[{{a[x], 0 <= x <= u}, {b[1 - x], u < x <= 1}}, {x, 0,
1}] /. param


b = Piecewise[{{5*10^-6, 0 <= x <= u}, {50*10^-6, u < x <= 1}}, {x, 0,
1}] /. param;
g = 1;
h = 1;

nom[n_?NumericQ] :=
NIntegrate[(b \[Phi][x])/(g - n \[Phi][x])^2 +
53/100*(h^(1/2) \[Phi][x])/(g - n \[Phi][x])^(3/2) +
53/200*(b^(1/4) \[Phi][x])/(g - n \[Phi][x])^(5/4), {x, 0, 1},
Method -> "LocalAdaptive"]


denom[n_?NumericQ] :=
NIntegrate[(2 b \[Phi][x]^2)/(g - n \[Phi][x])^3 +
159/200*(h^(1/2) \[Phi][x]^2)/(g - n \[Phi][x])^(5/2) +
53/160*(b^(1/4) \[Phi][x]^2)/(g - n \[Phi][x])^(9/4), {x, 0, 1},
Method -> "LocalAdaptive"]

nPI = FindRoot[n - nom[n]/denom[n] == 0, {n, 0.01},
Method -> {"Newton", "UpdateJacobian" -> 3}]

Answer




a1[x_] = -0.30744074406928307` Cos[1.0065881856430914` x] + 
0.30744074406928307` Cosh[1.0065881856430914` x] +
Sin[1.0065881856430914` x] - Sinh[1.0065881856430914` x];

a2[x_] = 0.0384058298228355` Cos[1.7899950449175461` x] +
0.008258500530147013` Cosh[1.7899950449175461` x];

param = u -> 6/11;

Ï•[x_] := Piecewise[{{a1[x], 0 <= x <= u}, {a2[1 - x], u < x <= 1}}, {x, 0, 1}] /. param;


b[x_] := Piecewise[{{5*10^-6, 0 <= x <= u}, {50*10^-6, u < x <= 1}}, {x, 0, 1}] /. param;
g = 1;
h = 1;

nom[n_?NumericQ] :=
NIntegrate[(b[x] Ï•[x])/(g - n Ï•[x])^2 +
53/100*(h^(1/2) Ï•[x])/(g - n Ï•[x])^(3/2) +
53/200*(b[x]^(1/4) Ï•[x])/(g - n Ï•[x])^(5/4), {x, 0, 1},
Method -> "LocalAdaptive"]


denom[n_?NumericQ] :=
NIntegrate[(2 b[x] Ï•[x]^2)/(g - n Ï•[x])^3 +
159/200*(h^(1/2) Ï•[x]^2)/(g - n Ï•[x])^(5/2) +
53/160*(b[x]^(1/4) Ï•[x]^2)/(g - n Ï•[x])^(9/4), {x, 0, 1},
Method -> "LocalAdaptive"]

nPI = FindRoot[n - nom[n]/denom[n] == 0, {n, 10},
Method -> {"Newton", "UpdateJacobian" -> 3}]


(* {n -> 9.81491} *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]