Skip to main content

Computing kernels of a matrix in distinct cases


I have the following matrix:


{{c1 d1 - e1 f1, c1 d2 - e1 f2, c1 d3 - e1 f3, c1 d4 - e1 f4},
{c2 d1 - e2 f1, c2 d2 - e2 f2, c2 d3 - e2 f3, c2 d4 - e2 f4},
{c3 d1 - e3 f1, c3 d2 - e3 f2, c3 d3 - e3 f3, c3 d4 - e3 f4},

{c4 d1 - e4 f1, c4 d2 - e4 f2, c4 d3 - e4 f3, c4 d4 - e4 f4},
{c5 d1 - e5 f1, c5 d2 - e5 f2, c5 d3 - e5 f3, c5 d4 - e5 f4},
{c6 d1 - e6 f1, c6 d2 - e6 f2, c6 d3 - e6 f3, c6 d4 - e6 f4}}

From the way it's constructed, I know that the rank can be at most two. If I ask Mathematica to row reduce the matrix, I end up with the following:


{{1, 0, (d3 f2 - d2 f3)/(-d2 f1 + d1 f2), (d4 f2 - d2 f4)/(-d2 f1 + d1 f2)},   
{0, 1, (d3 f1 - d1 f3)/(d2 f1 - d1 f2), (d4 f1 - d1 f4)/(d2 f1 - d1 f2)},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},

{0, 0, 0, 0}}

As can be seen, this is only valid when $d_1f_2\neq d_2f_1$. Furthermore, if I look at the left kernel, then Mathematica gives me the following basis:


{{-((-c6 e2 + c2 e6)/(c2 e1 - c1 e2)), -((c6 e1 - c1 e6)/(c2 e1 - c1 e2)), 0, 0, 0, 1},
{-((-c5 e2 + c2 e5)/(c2 e1 - c1 e2)), -((c5 e1 - c1 e5)/(c2 e1 - c1 e2)), 0, 0, 1, 0},
{-((-c4 e2 + c2 e4)/(c2 e1 - c1 e2)), -((c4 e1 - c1 e4)/(c2 e1 - c1 e2)), 0, 1, 0, 0},
{-((-c3 e2 + c2 e3)/(c2 e1 - c1 e2)), -((c3 e1 - c1 e3)/(c2 e1 - c1 e2)), 1, 0, 0, 0}}

Again, this basis is only valid when $c_1e_2\neq c_2e_1$. I need to find a basis in the case that $c_1e_2=c_2e_1$ and a row reduction when $d_1f_2=d_2f_1$. How can this be done?



Answer




You can use the option ZeroTest as follows:


mat = {{c1 d1 - e1 f1, c1 d2 - e1 f2, c1 d3 - e1 f3, c1 d4 - e1 f4},
{c2 d1 - e2 f1, c2 d2 - e2 f2, c2 d3 - e2 f3, c2 d4 - e2 f4},
{c3 d1 - e3 f1, c3 d2 - e3 f2, c3 d3 - e3 f3, c3 d4 - e3 f4},
{c4 d1 - e4 f1, c4 d2 - e4 f2, c4 d3 - e4 f3, c4 d4 - e4 f4},
{c5 d1 - e5 f1, c5 d2 - e5 f2, c5 d3 - e5 f3, c5 d4 - e5 f4},
{c6 d1 - e6 f1, c6 d2 - e6 f2, c6 d3 - e6 f3, c6 d4 - e6 f4}};

RowReduce[mat, ZeroTest ->
(PossibleZeroQ[Simplify[#, Assumptions -> {-d2 f1 + d1 f2 == 0}]] &)]//Short[#, 5] &



enter image description here



Similarly,


RowReduce[Transpose@mat, ZeroTest ->
(PossibleZeroQ[Simplify[#, Assumptions->{c2 e1 - c1 e2 == 0}]] &)]//Short[#, 5] &


enter image description here




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...