Skip to main content

numerical integration - What is the correct way to use NIntegrate inside the FindMinimum function?


I'm having minor issues with the FindMinimum function when using NIntegrate inside. The functions work perfectly well but I get warning messages and I was wondering if maybe I could be enlightened on the correct usage of these two functions together.


For the sake of illustration I provide the full set of functions I used on a simple example.


phi[t_, k_, h_] := (1/h)^3*
Piecewise[{{(h (1 - k) + t)^2 (h (1 + 2 k) - 2 t), (k - 1) h <= t <=

k*h}, {(h (1 + k) - t)^2 (h (1 - 2 k) + 2 t),
k*h <= t <= (k + 1) h}}];
psi[t_, k_, h_] := (1/h)^3*
Piecewise[{{(t - k*h) (h + t - k*h)^2, (k - 1) h <= t <=
k*h}, {(t - k*h) (h - t + k*h)^2, k *h <= t <= (k + 1)*h}}] ;
phipp[t_, k_, h_] := (1/h)^3*
Piecewise[{{2 (h (1 + 2 k) - 2 t) - 8 (h (1 - k) + t), (k - 1) h <=
t <= k*h}, {-8 (h (1 + k) - t) + 2 (h (1 - 2 k) + 2 t),
k*h <= t <= (k + 1) h}}];
psipp[t_, k_, h_] := (1/h)^3*

Piecewise[{{2 (-h k + t) + 4 (h - h k + t), (k - 1) h <= t <=
k*h}, {-4 (h + h k - t) + 2 (-h k + t),
k*h <= t <= (k + 1) h}}];
alpha[t_, k_, h_] := phi[t, k, h] + phipp[t, k, h];
beta[t_, k_, h_] := psi[t, k, h] + psipp[t, k, h];
T = Pi;
n = 2;
h = T/n;
FindMinimum[
NIntegrate[(h*beta[t, 0, h] - h*beta[t, n, h] +

a.Table[alpha[t, i, h], {i, 1, n - 1}] +
b.Table[h*beta[t, i, h], {i, 1, n - 1}])^2, {t, 0,
T}], {{a, {0.76}}, {b, {0.4}}}, Method -> "ConjugateGradient"]

I get the following warning message :


NIntegrate::inumr: "The integrand (a.{(8 Piecewise[{<<2>>},0])/\[Pi]^3+(8 Piecewise[{<<2>>},0])/\[Pi]^3}+b.{1/2\\[Pi]\(8\Power[<<2>>]\Piecewise[<<2>>]+8\Power[<<2>>]\Piecewise[<<2>>])}-1/2\\[Pi]\((8 Piecewise[{{<<2>>},{<<2>>}},0])/\[Pi]^3+(8 Piecewise[{{<<2>>},{<<2>>}},0])/\[Pi]^3)+1/2\\[Pi]\((8 Piecewise[{{<<2>>},{<<2>>}},0])/\[Pi]^3+(8 Piecewise[{{<<2>>},{<<2>>}},0])/\[Pi]^3))^2 has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,3.14159}}"

I ask about this because FindMinimum takes unexpectedly long time to converge to the solution (which is a right one). But I thought that maybe using the functions correctly will accelerate the process.



Answer



The problem is indeed that Mathematica tries to do numerical operations before the symbols have value. You can fix this as follows.



Preliminary definitions, unchanged from yours


phi[t_, k_, h_] := (1/h)^3*
Piecewise[{{(h (1 - k) + t)^2 (h (1 + 2 k) - 2 t), (k - 1) h <=
t <= k*h}, {(h (1 + k) - t)^2 (h (1 - 2 k) + 2 t),
k*h <= t <= (k + 1) h}}];
psi[t_, k_, h_] := (1/h)^3*
Piecewise[{{(t - k*h) (h + t - k*h)^2, (k - 1) h <= t <=
k*h}, {(t - k*h) (h - t + k*h)^2, k*h <= t <= (k + 1)*h}}];
phipp[t_, k_, h_] := (1/h)^3*
Piecewise[{{2 (h (1 + 2 k) - 2 t) - 8 (h (1 - k) + t), (k - 1) h <=

t <= k*h}, {-8 (h (1 + k) - t) + 2 (h (1 - 2 k) + 2 t),
k*h <= t <= (k + 1) h}}];
psipp[t_, k_, h_] := (1/h)^3*
Piecewise[{{2 (-h k + t) + 4 (h - h k + t), (k - 1) h <= t <=
k*h}, {-4 (h + h k - t) + 2 (-h k + t),
k*h <= t <= (k + 1) h}}];
alpha[t_, k_, h_] := phi[t, k, h] + phipp[t, k, h];
beta[t_, k_, h_] := psi[t, k, h] + psipp[t, k, h];
T = Pi;
n = 2;

h = T/n;

Pull the integral out of the FindMinimum and make it only evaluate for numerical lists


Here's the integral, defined so as to only evaluate for numeric lists. This is cumbersome because of the way a is defined (to be a list).


ClearAll[fn];
fn[a_?(VectorQ[#, NumericQ] &), b_?(VectorQ[#, NumericQ] &)] :=
NIntegrate[(h*beta[t, 0, h] - h*beta[t, n, h] +
a.Table[alpha[t, i, h], {i, 1, n - 1}] +
b.Table[h*beta[t, i, h], {i, 1, n - 1}])^2, {t, 0, T}]


And now FindMinimum has no problem:


FindMinimum[fn[a, b], {{a, {0.76}}, {b, {0.4}}}, 
Method -> "ConjugateGradient"]

Mathematica graphics


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...