I'm having minor issues with the FindMinimum
function when using NIntegrate
inside. The functions work perfectly well but I get warning messages and I was wondering if maybe I could be enlightened on the correct usage of these two functions together.
For the sake of illustration I provide the full set of functions I used on a simple example.
phi[t_, k_, h_] := (1/h)^3*
Piecewise[{{(h (1 - k) + t)^2 (h (1 + 2 k) - 2 t), (k - 1) h <= t <=
k*h}, {(h (1 + k) - t)^2 (h (1 - 2 k) + 2 t),
k*h <= t <= (k + 1) h}}];
psi[t_, k_, h_] := (1/h)^3*
Piecewise[{{(t - k*h) (h + t - k*h)^2, (k - 1) h <= t <=
k*h}, {(t - k*h) (h - t + k*h)^2, k *h <= t <= (k + 1)*h}}] ;
phipp[t_, k_, h_] := (1/h)^3*
Piecewise[{{2 (h (1 + 2 k) - 2 t) - 8 (h (1 - k) + t), (k - 1) h <=
t <= k*h}, {-8 (h (1 + k) - t) + 2 (h (1 - 2 k) + 2 t),
k*h <= t <= (k + 1) h}}];
psipp[t_, k_, h_] := (1/h)^3*
Piecewise[{{2 (-h k + t) + 4 (h - h k + t), (k - 1) h <= t <=
k*h}, {-4 (h + h k - t) + 2 (-h k + t),
k*h <= t <= (k + 1) h}}];
alpha[t_, k_, h_] := phi[t, k, h] + phipp[t, k, h];
beta[t_, k_, h_] := psi[t, k, h] + psipp[t, k, h];
T = Pi;
n = 2;
h = T/n;
FindMinimum[
NIntegrate[(h*beta[t, 0, h] - h*beta[t, n, h] +
a.Table[alpha[t, i, h], {i, 1, n - 1}] +
b.Table[h*beta[t, i, h], {i, 1, n - 1}])^2, {t, 0,
T}], {{a, {0.76}}, {b, {0.4}}}, Method -> "ConjugateGradient"]
I get the following warning message :
NIntegrate::inumr: "The integrand (a.{(8 Piecewise[{<<2>>},0])/\[Pi]^3+(8 Piecewise[{<<2>>},0])/\[Pi]^3}+b.{1/2\\[Pi]\(8\Power[<<2>>]\Piecewise[<<2>>]+8\Power[<<2>>]\Piecewise[<<2>>])}-1/2\\[Pi]\((8 Piecewise[{{<<2>>},{<<2>>}},0])/\[Pi]^3+(8 Piecewise[{{<<2>>},{<<2>>}},0])/\[Pi]^3)+1/2\\[Pi]\((8 Piecewise[{{<<2>>},{<<2>>}},0])/\[Pi]^3+(8 Piecewise[{{<<2>>},{<<2>>}},0])/\[Pi]^3))^2 has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,3.14159}}"
I ask about this because FindMinimum
takes unexpectedly long time to converge to the solution (which is a right one). But I thought that maybe using the functions correctly will accelerate the process.
Answer
The problem is indeed that Mathematica tries to do numerical operations before the symbols have value. You can fix this as follows.
Preliminary definitions, unchanged from yours
phi[t_, k_, h_] := (1/h)^3*
Piecewise[{{(h (1 - k) + t)^2 (h (1 + 2 k) - 2 t), (k - 1) h <=
t <= k*h}, {(h (1 + k) - t)^2 (h (1 - 2 k) + 2 t),
k*h <= t <= (k + 1) h}}];
psi[t_, k_, h_] := (1/h)^3*
Piecewise[{{(t - k*h) (h + t - k*h)^2, (k - 1) h <= t <=
k*h}, {(t - k*h) (h - t + k*h)^2, k*h <= t <= (k + 1)*h}}];
phipp[t_, k_, h_] := (1/h)^3*
Piecewise[{{2 (h (1 + 2 k) - 2 t) - 8 (h (1 - k) + t), (k - 1) h <=
t <= k*h}, {-8 (h (1 + k) - t) + 2 (h (1 - 2 k) + 2 t),
k*h <= t <= (k + 1) h}}];
psipp[t_, k_, h_] := (1/h)^3*
Piecewise[{{2 (-h k + t) + 4 (h - h k + t), (k - 1) h <= t <=
k*h}, {-4 (h + h k - t) + 2 (-h k + t),
k*h <= t <= (k + 1) h}}];
alpha[t_, k_, h_] := phi[t, k, h] + phipp[t, k, h];
beta[t_, k_, h_] := psi[t, k, h] + psipp[t, k, h];
T = Pi;
n = 2;
h = T/n;
Pull the integral out of the FindMinimum
and make it only evaluate for numerical lists
Here's the integral, defined so as to only evaluate for numeric lists. This is cumbersome because of the way a
is defined (to be a list).
ClearAll[fn];
fn[a_?(VectorQ[#, NumericQ] &), b_?(VectorQ[#, NumericQ] &)] :=
NIntegrate[(h*beta[t, 0, h] - h*beta[t, n, h] +
a.Table[alpha[t, i, h], {i, 1, n - 1}] +
b.Table[h*beta[t, i, h], {i, 1, n - 1}])^2, {t, 0, T}]
And now FindMinimum
has no problem:
FindMinimum[fn[a, b], {{a, {0.76}}, {b, {0.4}}},
Method -> "ConjugateGradient"]
Comments
Post a Comment