Skip to main content

Want to compute the permutations of {1, 2, ..., 11} with only 3 GB of memory



There is another way to calculate


Permutations [{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}]


without triggering an error, I have 3 GB of RAM with WIN 7


Edit:


This short code is the one that broke my head for a while, are 11 variables that must meet a very specific condition, their difference must be 1. either can take the 11 values, hence all permutations, this code is an adaptation of another code I saw here, which helps me to what I need.


juan[{a_, b_, c_, d_, e_, f_, g_, h_, i_, j_, k_}] := 
Abs[Differences /@ ({{a, b}, {a, c}, {b, c}, {b, f}, {b, e}, {c,
e}, {c, f}, {c, g}, {d, f}, {d, g}, {e, b}, {e, a}, {e, f}, {e,
i}, {e, h}, {f, g}, {f, j}, {f, i}, {f, h}, {g, i}, {g,
j}, {h, i}, {h, k}, {i, j}, {i, k}, {j, k}})] // Flatten
*(*per = Permutations[Range@11]*) (this line is calculated as 799 consecutive files in HD thanks to the collaboration of rasher)

(*per=Import["C:\\Users\\M\\Desktop\\per.txt"]*)(as I upload the files sequentially and that its securities are passing the variable "per" and will be prosecuted.?)
Select[per, FreeQ[juan@#, 1] &]

Answer



This will write the permutations to permutations.txt in list blocks of ~50,000 each.


Quiet@Block[{$ContextPath}, Needs["Combinatorica`"]]

len = 11
numchunk = 1000

chunks = Partition[Clip[FindDivisions[{0, len! - 1, 1}, numchunk],

{0, len! - 1}, {0,len! - 1}], 2, 1] //
(# + Join[{{0, 0}}, ConstantArray[{1, 0}, Length@# - 1]]) &;

Monitor[(chunk = #; (Combinatorica`UnrankPermutation[#, 11] & /@
Range @@ chunk) >>
"permutations-" <> ToString[First@#] <> "-" <>
ToString[Last@#] <> ".txt") & /@ chunks;, chunk]

Will take about an hour, I'd ventue...


If you must have equal sized files, you'll want to create your own chunks, since FindDivisions uses a heuristic that usually won't meet that criteria, e.g. in your case for 11 length:



p = Partition[Range[1, 102089*392, 102089] - 1, 2, 1];
p[[1]] = p[[1]] - {0, 1};
p[[2 ;;, 1]] = p[[2 ;;, 1]] + 1;
chunks = p;

Will create files all with same # of permutations (about 100k).


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...