Skip to main content

Want to compute the permutations of {1, 2, ..., 11} with only 3 GB of memory



There is another way to calculate


Permutations [{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}]


without triggering an error, I have 3 GB of RAM with WIN 7


Edit:


This short code is the one that broke my head for a while, are 11 variables that must meet a very specific condition, their difference must be 1. either can take the 11 values, hence all permutations, this code is an adaptation of another code I saw here, which helps me to what I need.


juan[{a_, b_, c_, d_, e_, f_, g_, h_, i_, j_, k_}] := 
Abs[Differences /@ ({{a, b}, {a, c}, {b, c}, {b, f}, {b, e}, {c,
e}, {c, f}, {c, g}, {d, f}, {d, g}, {e, b}, {e, a}, {e, f}, {e,
i}, {e, h}, {f, g}, {f, j}, {f, i}, {f, h}, {g, i}, {g,
j}, {h, i}, {h, k}, {i, j}, {i, k}, {j, k}})] // Flatten
*(*per = Permutations[Range@11]*) (this line is calculated as 799 consecutive files in HD thanks to the collaboration of rasher)

(*per=Import["C:\\Users\\M\\Desktop\\per.txt"]*)(as I upload the files sequentially and that its securities are passing the variable "per" and will be prosecuted.?)
Select[per, FreeQ[juan@#, 1] &]

Answer



This will write the permutations to permutations.txt in list blocks of ~50,000 each.


Quiet@Block[{$ContextPath}, Needs["Combinatorica`"]]

len = 11
numchunk = 1000

chunks = Partition[Clip[FindDivisions[{0, len! - 1, 1}, numchunk],

{0, len! - 1}, {0,len! - 1}], 2, 1] //
(# + Join[{{0, 0}}, ConstantArray[{1, 0}, Length@# - 1]]) &;

Monitor[(chunk = #; (Combinatorica`UnrankPermutation[#, 11] & /@
Range @@ chunk) >>
"permutations-" <> ToString[First@#] <> "-" <>
ToString[Last@#] <> ".txt") & /@ chunks;, chunk]

Will take about an hour, I'd ventue...


If you must have equal sized files, you'll want to create your own chunks, since FindDivisions uses a heuristic that usually won't meet that criteria, e.g. in your case for 11 length:



p = Partition[Range[1, 102089*392, 102089] - 1, 2, 1];
p[[1]] = p[[1]] - {0, 1};
p[[2 ;;, 1]] = p[[2 ;;, 1]] + 1;
chunks = p;

Will create files all with same # of permutations (about 100k).


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]