Skip to main content

formatting - Split A text-style cell to multiple cells by a fixed width



Sample Cell 1



Cell["Much of point set topology consists in developing a convenient language to talk about when various points in a space are near to one another and about the notion of continuity. The key is that the same definitions can be applied to many disparate branches of math.", "Text"]


Split to multiple cells like



Sample Cell 2



Cell["Much of point set topology consists in developing a convenient", "Text"]
Cell[" language to talk about when various points in a space are near", "Text"]
Cell[" to one another and about the notion of continuity. The key is", "Text"]
Cell[" that the same definitions can be applied to many disparate ", "Text"]
Cell["branches of math.", "Text"]


Though, in this example, they are all plaint text, maybe much simpler, the problem might be harder when there are many inline math cells.




Here is an sample post for why I need this, I wanna make first light-green block text into multiple framed lines like what below Definition 4.1.1. http://quaternions.blog.163.com/blog/static/206082147201356102512774/




Bill's present method will not able to deal with the inline cells.



Upadte sample Cell 3 with inline cells



Cell[TextData[{"Much of point set topology", Cell[BoxData[\(TraditionalForm\`\(\ consists\ \)\)], FormatType -> "TraditionalForm"], "in developing a convenient language to  talk about ", Cell[BoxData[\(TraditionalForm\`when\)], FormatType -> "TraditionalForm"], " various points in a space are near to one another and about the notion of ", Cell[BoxData[\(TraditionalForm\`\(continuity\^2\)\)], FormatType -> "TraditionalForm"], ". The key is that the same definitions can be applied to many disparate branches of math."}], "Text"]


Answer



Take the first cell and give it a name:


myCell=Cell["Much of point set topology consists in developing a convenient language to  talk about when various points in a space are near to one another and about the notion of continuity. The key is that the same definitions can be applied to many disparate branches of math.", "Text"]

Here's a function to break it into pieces with about n/2 words in each piece:


breakCell[str_, n_] := Cell /@ StringJoin /@ 
Partition[Riffle[StringSplit[First[List @@ str]], " "], n]

For example, applying breakCell to myCell gives:


breakCell[myCell, 15]


{Cell["Much of point set topology consists in developing"],
Cell[" a convenient language to talk about when "],
Cell["various points in a space are near to"],
Cell[" one another and about the notion of "],
Cell["continuity. The key is that the same definitions"],
Cell[" can be applied to many disparate branches "]}

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.