Skip to main content

compile - How to boost the performance of my own BSplineFunction


In my CAGD package, I implemented a CAGDBSplineFunction[] like built-in BSplineFunction[]. Here is a performance comparison:


pts = Table[{ Cos[2 Pi u/6] Cos[v], Sin[2 Pi u/6] Cos[v], v}, {u, 6}, {v, -1, 1, 1/2}];
f = BSplineFunction[pts]
g = CAGDBSplineFunction[pts]

ParametricPlot3D[f[u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming
ParametricPlot3D[g[u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming


enter image description here


Obviously, my CAGDBSplineFunction[] is far slower(about 20X) than the built-in BSplineFunction[]


The CAGDBSplineFunction[] mainly uses an auxiliary function functionalNonzeroBasis[] to compute the coordinate of a parameter pair $(u,v)$.


To improve the performance, I refactor the functionalNonzeroBasis[] to compiledNonzeroBasis[]


searchSpan[{deg_, knots_}, u_] := 
With[{un = knots[[-(deg + 1)]]},
If[u == un,
Position[knots, un][[1, 1]] - 2,
Ordering[UnitStep[u - knots], 1][[1]] - 2

]
]

coeff[u_, U_, i_, p_] :=
If[U[[i + p + 1]] != U[[i + 1]],
(u - U[[i + 1]])/(U[[i + p + 1]] - U[[i + 1]]), 0]

compiledNonzeroBasis=
ReleaseHold[
Hold@Compile[{{i, _Integer}, {p, _Integer}, {u, _Real, 1}, {u0, _Real}},

Module[
{lst = Table[0., {p + 2}, {p + 1}], cc = i - 2},
lst[[2, 1]] = 1.0;
Do[
lst[[m + n - cc, n + 1]] =
coeff[u0, u, m, n] lst[[m + n - 1 - cc, n]] + (1 -
coeff[u0, u, m + 1, n]) lst[[m + n - cc, n]],
{n, 1, p}, {m, i - n, i}
];
lst // Transpose // Last // Rest

], CompilationTarget -> "C", RuntimeOptions -> "Speed"
] /. DownValues[coeff]
]

compiledBSplineSurf[
ctrlnets_, {{deg1_, knots1_}, {deg2_, knots2_}},
u_?NumericQ, v_?NumericQ] :=
Module[{i, j, validnets, row, col},
i = searchSpan[{deg1, knots1}, u];
j = searchSpan[{deg2, knots2}, v];

validnets =
Take[ctrlnets, {i - deg1 + 1, i + 1}, {j - deg2 + 1, j + 1}];
row = compiledNonzeroBasis[i, deg1, knots1, u];
col = compiledNonzeroBasis[j, deg2, knots2, v];
row.Transpose[validnets, {1, 3, 2}].col
]

Test


(*knot vector*)
k1 = {0., 0., 0., 0., 0.333333, 0.666667, 1., 1., 1., 1.};

k2 = {0., 0., 0., 0., 0.5, 1., 1., 1., 1.};

ParametricPlot3D[
compiledBSplineSurf[pts, {{3, k1}, {3, k2}}, u, v],
{u, 0, 1}, {v, 0, 1}] // AbsoluteTiming

This time the performance improves about 2X


enter image description here


Another trial is trying Compile`GetElement


With[{get = Compile`GetElement},

basisCoeff[deg_, U_, i_, u_] :=
If[U[[i + deg + 1]] != U[[i + 1]],
(u - get[U, i + 1])/(get[U, i + deg + 1] - get[U, i + 1]),
(*case for ui=uj*)
0.0
];
optimizedNonzeroBasis =
ReleaseHold[
Hold@Compile[{{i, _Integer}, {deg, _Integer}, {knots, _Real, 1}, {u0, _Real}},
Module[{lst = Table[0., {deg + 2}, {deg + 1}], c = i - 2},

lst[[2, 1]] = 1.0;
Do[
With[{mn = m + n},
lst[[mn - c, n + 1]] =
basisCoeff[n, knots, m, u0] get[lst, mn - c - 1, n] +
(1 - basisCoeff[n, knots, m + 1, u0]) get[lst,
mn - c, n]
],
{n, 1, deg}, {m, i - n, i}
];

Rest@Last[Transpose[lst]
]
], CompilationTarget -> "C", RuntimeOptions -> "Speed"
] /. DownValues[basisCoeff]]
]

ParametricPlot3D[
optimizedBSplineSurf[pts, {{3, k1}, {3, k2}}, u, v],
{u, 0, 1}, {v, 0, 1}] // AbsoluteTiming


enter image description here


So I would like to know:



  • Is it possible to further improve/boost the performance of compiledBSplineSurf[]?




Update:


For the optimizedBSplineSurf[], just replace compiledNonzeroBasis[] with optimizedNonzeroBasis[]



Answer



You just need to fully compile your function:



fullycompiledBSplineSurf = 
Hold@Compile[{{ctrlnets, _Real, 3}, {deg1, _Integer}, {deg2, _Integer},
{knots1, _Real, 1}, {knots2, _Real, 1}, {u, _Real}, {v, _Real}},
Module[{i, j, validnets, row, col},
i = searchSpan[{deg1, knots1}, u];
j = searchSpan[{deg2, knots2}, v];
validnets = Take[ctrlnets, {i - deg1 + 1, i + 1}, {j - deg2 + 1, j + 1}];
row = optimizedNonzeroBasis[i, deg1, knots1, u];
col = optimizedNonzeroBasis[j, deg2, knots2, v];
row.Transpose[validnets, {1, 3, 2}].col

],
CompilationOptions -> {"InlineExternalDefinitions" -> True},
"RuntimeOptions" -> {"EvaluateSymbolically" -> False},
CompilationTarget -> C, RuntimeOptions -> "Speed"
] /. DownValues@searchSpan // ReleaseHold;

ParametricPlot3D[
fullycompiledBSplineSurf[pts, 3, 3, k1, k2, u, v],
{u, 0, 1}, {v, 0, 1}] // AbsoluteTiming


enter image description here


Now the function is about half as fast as the built-in:


ParametricPlot3D[f[u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming

enter image description here


I think I don't need to make any explanation, because all the techniques above have been used in answering your previous questions.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...