Skip to main content

bugs - Numerical minimum of a one-valued function


Bug introduced in 12.0 [CASE:4332003]




My problem is that the Kernel cannot finish computation and eats up memory when a simple constraint like 0 <= x <= 2 is specified in FindMinimum.


I have the function


f[x_] := 
7/(5 Sqrt[5 Pi] + 2 Sqrt[11 Pi]) (2/7 Exp[-(x - 3)^2/11] + 5/7 Exp[-(x + 2)^2/5])
Plot[f[x], {x, -10, 10}]


enter image description here


I would like to find the local minimum near 1.95, and the two local maxima. For the maxima, the following works:


FindMaximum[f[x], {x, 3}]
FindMaximum[f[x], {x, -3}]

For the minimum, however, the method seems to be highly sensitive to the starting value: with FindMinimum[f[x], {x, 0}] the minimum is found, but with FindMinimum[f[x], {x, 1.9}] or any other value close to the local minimum, I end up with a large value of x (and a value of f[x] close to 0, of course).


I tried to add a constraint, with FindMinimum[{f[x], 1 <= x <= 2}, {x, 1.9}], but Mathematica takes forever, eats up gigabytes of memory, and I had to halt the execution.


I would like to know what I do wrong. There is the alternative of differentiating and using FindRoot which works well, but I think I am probably doing something wrong with FindMinimum. What should I do?



Answer



$Version


"12.0.0 for Mac OS X x86 (64-bit) (April 7, 2019)"

f[x_] := 7/(5 Sqrt[5 Pi] + 2 Sqrt[11 Pi]) (2/7 Exp[-(x - 3)^2/11] +
5/7 Exp[-(x + 2)^2/5]) // FullSimplify

For FindMinimum use the WorkingPrecision option


min = FindMinimum[{f[x], 1 < x < 3}, {x, 2}, WorkingPrecision -> 20]

(* {0.064291094806372406402, {x -> 1.9667863700044219133}} *)


maxg = FindMaximum[f[x], {x, -3}]

(* {0.165184, {x -> -1.89931}} *)

maxl = FindMaximum[{f[x], 2 < x < 5}, {x, 7/2}]

(* {0.0647397, {x -> 2.66797}} *)

Plot[f[x], {x, -10, 10},

PlotStyle -> LightGray,
Epilog ->
{AbsolutePointSize[3], Red, Point[{x, f[x]} /. {maxg, maxl}[[All, 2]]],
Blue, Point[{x, f[x]} /. min[[2]]]}]

enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...