Skip to main content

special functions - Using NSolve for Elliptic Equations over Fundamental Parallelogram in Complex Plane


I'm considering solving elliptic functions over a fundamental domain of the torus with half-periods $\omega_{1}=\pi/2$ and $\omega_{2} = \pi \tau /2$, where $\tau$ is the modular parameter of the torus. The equation I want solutions of is: $$\wp(u \, | \, \omega_{1}, \omega_{2})= -\frac{1}{3}E_{2}(\tau)$$


which definitely must have two solutions $u$ in the parallelogram for all $\tau$. Or perhaps one solution or order 2.


My main issues are not knowing how to effectively parameterize the fundamental parallelogram in Mathematica, as well as my NSolve routine not working properly. My idea was to fix $\omega_{1}$ and $\omega_{2}$ and then have mathematica consider the domain: $$\{x\omega_{2} + y \omega_{2} \, | \, 0 \leq x \leq 2, -1 \leq y \leq 1\} \subseteq \mathbb{C}.$$


I think this is OK, but I'm also worried it might be a bad parameterization causing my NSolve issues. The code I have is:


tau = 0 + (3/2)*I; w1 = Pi/2; w2 = Pi*tau/2; inv = WeierstrassInvariants[{w1, w2}]; E2[t_] = 1 - 24*Sum[(n*Exp[2*Pi*I*(t)*n])/(1 - Exp[2*Pi*I*(t)*n]), {n, 1, 300}]; WP[x_, y_] = WeierstrassP[w1*x + w2*y, inv]; L = -(1/3)*N[E2[tau], 50]; NSolve[{WP[x, y] == L && 0 <= x <= 2 && -1 <= y <= 1}, {x, y}, WorkingPrecision -> 50]


The problem is that NSolve is just spitting my expression back out immediately without computing anything. I've tried a number of things including telling Mathematica to do it over the Reals, using a single complex variable $u$ instead of the $x,y$, as well as dropping the domain restrictions, and nothing seems to work.


My function E2[t_] for the Eisenstein series isn't the problem; it spits out a number incredibly quickly.


I'd really like to avoid using FindRoot if at all possible because I don't want to have to estimate where these two special points are in the parallelogram.


Thanks a lot for any advice!





Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...