Skip to main content

programming - Improve the performance of solutions to Project Euler (#14)


Problem


I have following code, when n<=10^5 it's not slow, but n>2*10^5 it's became very slow. I think maybe some temp value greater than 2^31-1, so make compile invalid. Could you give any idea make it can be compiled? As far as possible not to use recursive algorithm.



pe14 = Compile[{},
Module[{n1, len, maxLen = 0, res = 0},
Do[n1 = n;
len = 1;
While[n1 != 1,
n1 = If[EvenQ@n1, n1~Quotient~2, 3 n1 + 1];
len++
];
If[len > maxLen, maxLen = len; res = n],
{n, 1, 10^6}];

{maxLen, res}
]
];

pe14[] // AbsoluteTiming

Answer



A print statement shows that this will overflow on platforms where Mathematica machine integers are 32 bits.


pe14 = Compile[{}, Module[{n1, len, maxLen = 0, res = 0, print = 0},
Do[n1 = n;
len = 1;

While[n1 != 1, n1 = If[EvenQ@n1, n1~Quotient~2, 3 n1 + 1];
If[n1 > 10^4*n && print < 10, print++; Print[{n, n1}]];
len++];
If[len > maxLen, maxLen = len; res = n], {n, 1, 2 10^5}];
{maxLen, res}]];

pe14[] // AbsoluteTiming

During evaluation of In[356]:= {77671,1047216490}


During evaluation of In[356]:= {77671,1570824736}

During evaluation of In[356]:= {77671,785412368}

During evaluation of In[356]:= {103561,1047216490}

During evaluation of In[356]:= {103561,1570824736}

During evaluation of In[356]:= {113383,1654740898}


During evaluation of In[356]:= {113383,2482111348}

During evaluation of In[356]:= {113383,1241055674}

During evaluation of In[356]:= {113383,1861583512}

During evaluation of In[356]:= {113383,1325287492}

Out[357]= {4.547872, {383, 156159}}


On 64 bit platforms it will run to completion. Takes around 18 seconds on my desktop.


You can cut a factor of 2 by only explicitly handling odd values, adjusting for evens that are multiples thereof. Another factor of 4 comes from compiling to C.


pe14b = Compile[{{top, _Integer}}, 
Module[{n1, len, maxLen = 0, res = 0},
Do[n1 = n;
len = 1;
While[n1 != 1, n1 = If[EvenQ@n1, n1~Quotient~2, 3 n1 + 1];
len++];
If[len > maxLen, maxLen = len + Floor[Log[2, top/N[n]]];
res = n], {n, 1, top, 2}];

{maxLen, res}], CompilationTarget -> "C"];

In[377]:= pe14b[10^6] // AbsoluteTiming

Out[377]= {2.396513, {525, 837799}}

For platforms that do not support 64 bit machine integers, one might try to emulate this with machine doubles. EvenQ would have to check whether dividing by two creates a fractional part. The variant below seems to work as it ought.


pe14c = Compile[{{top, _Integer}}, 
Module[{n1, len, maxLen = 0, res = 0.},
Do[n1 = n;

len = 1;
While[n1 != 1,
n1 = If[FractionalPart[n1/2.] == 0, n1/2, 3 n1 + 1];
len++];
If[len > maxLen, maxLen = len + Floor[Log[2, top/n]];
res = n], {n, 1., top, 2.}];
{maxLen, res}], CompilationTarget -> "C"];

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]