Skip to main content

core language - Row vectors and column vectors (Mathematica vs Matlab)


As far as I know, Mathematica does not distinguish between row vectors and column vectors: all vectors are seen as lists. I know ways to bypass this as suggested here Product between a column vector and a row vector - error and get Matlab-style matrix multiplication.


My question is why Mathematica and Matlab behaves differently in this context? I have seen a clear explanation in https://groups.google.com/forum/#!forum/comp.soft-sys.math.mathematica several years ago but I cannot recall it anymore.


I guess it has to do with something fundamental.



Answer



This is a limitation of MATLAB, as MATLAB is only able to work with matrices. It does not have true vectors. It cannot even represent a character array as a 1D array or a structure array as a single element—it always must be 2D.


Mathematica takes a much more general view. It works with arbitrary, $n$-index tensors. A 1-index tensor is called a vector. A 2-index one is called a matrix.


What is commonly called a "row vector" or a "column vector" is not really a vector. It is a $1\times k$ or a $k \times 1 $ matrix.



The dot product of a vector $v$ and a matrix $a$ is $$u_j = \sum_i v_i a_{ij}$$


The product of $a$ and $v$ is $$u_i = \sum_j a_{ij} v_j$$


In general, one can contract any two indices together, although Dot specifically only contracts the last one of the first tensor with the first one of the last tensor. TensorContract can do more general operations.




One particular limitation of Mathematica compared to MATLAB is that Mathematica cannot represent arrays where one of the dimensions is 0, e.g. a 0-by-n matrix. This is not due to the difference in philosophy that I described above. It's because Mathematca uses nested lists, so we can have a 1-by-0 {} but not a 0-by-1 thing.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...