Skip to main content

plotting - Transcritical Bifurcation phase portraits


An example equation for a Transcritical Bifurcations is given by:


dxdt=f(x,r)=rx−x2


In Mathematica, we can define the function as:


  f[x_, r_] := r x - x^2


We can create a grid of plots to show the Transcritical bifurcation as:


  p1 = Plot[f[x, 0], {x, -3, 3}, PlotRange -> {{-3, 3}, {-4, 3}}, Frame ->    True, 
FrameLabel -> {{"f(x,\[Lambda]}", None}, {"x", "r=0 case"}}, BaseStyle -> 12,
RotateLabel -> False, PlotTheme -> "Classic",
PlotStyle -> Thick, ImageSize -> 250];
p2 = Plot[f[x, 3], {x, -5, 5}, PlotRange -> {{-5, 5}, {-4, 3}}, Frame -> True,
FrameLabel -> {{"f(x,\[Lambda]}", None}, {"x", "r>0 case"}}, BaseStyle -> 12,
RotateLabel -> False, PlotTheme -> "Classic",
PlotStyle -> Thick, ImageSize -> 250];

p3 = Plot[f[x, -3], {x, -5, 5}, PlotRange -> {{-5, 5}, {-4, 3}}, Frame -> True,
FrameLabel -> {{"f(x,\[Lambda]}", None}, {"x", "r<0 case"}}, BaseStyle -> 12,
RotateLabel -> False, PlotTheme -> "Classic",
PlotStyle -> Thick, ImageSize -> 250];
Grid[{{p1, p2, p3}}, Frame -> True, FrameStyle -> LightGray]

However, what is the best approach to having it look like the grid below by adding the arrows and circles for stability and type of stability?


enter image description here


Is there a way to generalize this for different type of bifurcations (Hopf, Supercritical ...)?



Answer




Code


phasePortrait[f_, {{xmin_, xmax_}, {ymin_, ymax_}}] := Plot[
f[x], {x, xmin, xmax},
Frame -> True, PlotStyle -> Directive[Black, Thick],
ImageSize -> 500, PlotRange -> {{xmin, xmax}, {ymin, ymax}},
Epilog -> {getMarkers[f], getArrows[f, {xmin, xmax}]}
]

right = Triangle[{{2, 0}, {-1, 1}, {-1, -1}}];
left = Triangle[{{-2, 0}, {1, 1}, {1, -1}}];

stable = Disk[];
unstable = {White, Disk[], Black, Thick, Circle[]};
halfStableRight = {White, Disk[], Black, Thick, Circle[], Disk[{0, 0}, {1, 1}, {-Pi/2, Pi/2}]};
halfStableLeft = {White, Disk[], Black, Thick, Circle[], Disk[{0, 0}, {1, 1}, {Pi/2, 3 Pi/2}]};

insetMarker[marker_, x_] := Inset[Graphics[marker], {x, 0}, {0, 0}, Scaled[{0.05, 0.05}]]

getMarkers[f_] := Module[{x},
Switch[
{f[x - 0.01], f[x + 0.01]},

{_?Positive, _?Positive}, insetMarker[halfStableLeft, x],
{_?Negative, _?Negative}, insetMarker[halfStableRight, x],
{_?Positive, _?Negative}, insetMarker[stable, x],
{_?Negative, _?Positive}, insetMarker[unstable, x]
] /. Solve[f[x] == 0, x, Reals]
]

getArrows[f_, {xmin_, xmax_}] := Module[{x, sols, pos},
sols = DeleteDuplicates[x /. Solve[f[x] == 0, x, Reals]];
sols = Select[sols, xmin < # < xmax &];

sols = Prepend[sols, xmin];
sols = Append[sols, xmax];
pos = MovingAverage[sols, 2];
If[f[#] > 0, insetMarker[right, #], insetMarker[left, #]] & /@ pos
]

Usage


A simple usage example is this:


f[r_][x_] := r x - x^2
phasePortrait[f[-1], {{-3, 3}, {-4, 3}}]


Mathematica graphics


Note the way the function is defined, f[r_][x_] = ..., it is imperative to define the function in this way. The function passed to phasePortrait must be dependent on x only. The second argument of phasePortrait is the desired plot range in the form {{xmin, xmax}, {ymin, ymax}}.


Transcritical bifurcation


f[r_][x_] := r x - x^2
Row[{
phasePortrait[f[-1], {{-3, 3}, {-4, 3}}],
phasePortrait[f[0], {{-3, 3}, {-4, 3}}],
phasePortrait[f[1], {{-3, 3}, {-4, 3}}]
}]


Mathematica graphics


Supercritical pitchfork bifurcation


f[r_][x_] := r x - x^3
Row[{
phasePortrait[f[-1], {{-3, 3}, {-4, 3}}],
phasePortrait[f[0], {{-3, 3}, {-4, 3}}],
phasePortrait[f[1], {{-3, 3}, {-4, 3}}]
}]


Mathematica graphics


Subcritical pitchfork bifurcation


f[r_][x_] := r x + x^3
Row[{
phasePortrait[f[-1], {{-3, 3}, {-4, 3}}],
phasePortrait[f[0], {{-3, 3}, {-4, 3}}],
phasePortrait[f[1], {{-3, 3}, {-4, 3}}]
}]

Mathematica graphics



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]