Skip to main content

plotting - Transcritical Bifurcation phase portraits


An example equation for a Transcritical Bifurcations is given by:


$$\dfrac{dx}{dt} = f(x, r) = r x - x^2$$


In Mathematica, we can define the function as:


  f[x_, r_] := r x - x^2


We can create a grid of plots to show the Transcritical bifurcation as:


  p1 = Plot[f[x, 0], {x, -3, 3}, PlotRange -> {{-3, 3}, {-4, 3}}, Frame ->    True, 
FrameLabel -> {{"f(x,\[Lambda]}", None}, {"x", "r=0 case"}}, BaseStyle -> 12,
RotateLabel -> False, PlotTheme -> "Classic",
PlotStyle -> Thick, ImageSize -> 250];
p2 = Plot[f[x, 3], {x, -5, 5}, PlotRange -> {{-5, 5}, {-4, 3}}, Frame -> True,
FrameLabel -> {{"f(x,\[Lambda]}", None}, {"x", "r>0 case"}}, BaseStyle -> 12,
RotateLabel -> False, PlotTheme -> "Classic",
PlotStyle -> Thick, ImageSize -> 250];

p3 = Plot[f[x, -3], {x, -5, 5}, PlotRange -> {{-5, 5}, {-4, 3}}, Frame -> True,
FrameLabel -> {{"f(x,\[Lambda]}", None}, {"x", "r<0 case"}}, BaseStyle -> 12,
RotateLabel -> False, PlotTheme -> "Classic",
PlotStyle -> Thick, ImageSize -> 250];
Grid[{{p1, p2, p3}}, Frame -> True, FrameStyle -> LightGray]

However, what is the best approach to having it look like the grid below by adding the arrows and circles for stability and type of stability?


enter image description here


Is there a way to generalize this for different type of bifurcations (Hopf, Supercritical ...)?



Answer




Code


phasePortrait[f_, {{xmin_, xmax_}, {ymin_, ymax_}}] := Plot[
f[x], {x, xmin, xmax},
Frame -> True, PlotStyle -> Directive[Black, Thick],
ImageSize -> 500, PlotRange -> {{xmin, xmax}, {ymin, ymax}},
Epilog -> {getMarkers[f], getArrows[f, {xmin, xmax}]}
]

right = Triangle[{{2, 0}, {-1, 1}, {-1, -1}}];
left = Triangle[{{-2, 0}, {1, 1}, {1, -1}}];

stable = Disk[];
unstable = {White, Disk[], Black, Thick, Circle[]};
halfStableRight = {White, Disk[], Black, Thick, Circle[], Disk[{0, 0}, {1, 1}, {-Pi/2, Pi/2}]};
halfStableLeft = {White, Disk[], Black, Thick, Circle[], Disk[{0, 0}, {1, 1}, {Pi/2, 3 Pi/2}]};

insetMarker[marker_, x_] := Inset[Graphics[marker], {x, 0}, {0, 0}, Scaled[{0.05, 0.05}]]

getMarkers[f_] := Module[{x},
Switch[
{f[x - 0.01], f[x + 0.01]},

{_?Positive, _?Positive}, insetMarker[halfStableLeft, x],
{_?Negative, _?Negative}, insetMarker[halfStableRight, x],
{_?Positive, _?Negative}, insetMarker[stable, x],
{_?Negative, _?Positive}, insetMarker[unstable, x]
] /. Solve[f[x] == 0, x, Reals]
]

getArrows[f_, {xmin_, xmax_}] := Module[{x, sols, pos},
sols = DeleteDuplicates[x /. Solve[f[x] == 0, x, Reals]];
sols = Select[sols, xmin < # < xmax &];

sols = Prepend[sols, xmin];
sols = Append[sols, xmax];
pos = MovingAverage[sols, 2];
If[f[#] > 0, insetMarker[right, #], insetMarker[left, #]] & /@ pos
]

Usage


A simple usage example is this:


f[r_][x_] := r x - x^2
phasePortrait[f[-1], {{-3, 3}, {-4, 3}}]


Mathematica graphics


Note the way the function is defined, f[r_][x_] = ..., it is imperative to define the function in this way. The function passed to phasePortrait must be dependent on x only. The second argument of phasePortrait is the desired plot range in the form {{xmin, xmax}, {ymin, ymax}}.


Transcritical bifurcation


f[r_][x_] := r x - x^2
Row[{
phasePortrait[f[-1], {{-3, 3}, {-4, 3}}],
phasePortrait[f[0], {{-3, 3}, {-4, 3}}],
phasePortrait[f[1], {{-3, 3}, {-4, 3}}]
}]


Mathematica graphics


Supercritical pitchfork bifurcation


f[r_][x_] := r x - x^3
Row[{
phasePortrait[f[-1], {{-3, 3}, {-4, 3}}],
phasePortrait[f[0], {{-3, 3}, {-4, 3}}],
phasePortrait[f[1], {{-3, 3}, {-4, 3}}]
}]


Mathematica graphics


Subcritical pitchfork bifurcation


f[r_][x_] := r x + x^3
Row[{
phasePortrait[f[-1], {{-3, 3}, {-4, 3}}],
phasePortrait[f[0], {{-3, 3}, {-4, 3}}],
phasePortrait[f[1], {{-3, 3}, {-4, 3}}]
}]

Mathematica graphics



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...