Skip to main content

calculus and analysis - Wrong evaluation of integral in Mathematica? Numerical vs symbolic



I have Mathematica 11.0.1 in Ubuntu 16.04. My problem is that I have an integral but Mathematica is evaluating it wrong.
Here is the integral:


 Chop[(1/T)*Integrate[Exp[-I*3*ω*t]*(β Cos[ω t]^2) Exp[I*1*ω*t], {t, 0, T}]]


Using basic ideas(14e−2iπωt+14e2iπωt+12), it is clear that the integral should be β/4. But Mathematica gives this result:


0.195312 β  

Ingredients: (i) Choose T=0.01, ω=2π/T.


Addendum:
(i) Where am I going wrong?
Why such anomaly is coming?
(I really would like to know this. I think most of the time I know how to use Mathematica but then such wondrous things happen, and then again I am inside a Shutter Island(start again).)


(ii) If I choose T=0.1, answer is zero.


(iii) Variables(T, ω) are need to be declared or defined Globally, as they are required at so many places in my code(this was just an example). If I have to change the value then it has to be done at one place(globally defined), not locally at each defining places(cumbersome).



(iv) Finally, I have this


HB[a_, b_, t_, 
k_] := {{0, -($q[a, t] + $w[b, t]*Exp[I k a])}, {-($q[a, t] +
$w[b, t]*Exp[-I k a]), 0}};
where, $q[a, t] = a*Cos[ω t]^2, and $w = b

instead of (β Cos[ω t]^2) in the integrand.


(V) *Speed is the only problem in the received answer(thanks a lot for the answer, though), if there is any idea which can be used by optimizing the code and decreasing the computation time, it will be a great help. Instead of 3 and 1 in exponential, I have i and j inside a Table, forming a square matrix, that is where the code received in answer was very slow. *


ParallelTable[AbIntHB[a, b, i, j, k], {i, 0, 21}, {j, 0, 21}];


where AbIntHB[a, b, i, j, k] = Above Integral with HB matrix in between the Exponentials with i->Exp[-I*i*ω*t] and j->Exp[I*j*ω*t] indices.



Answer



T and ω must be either undefined or exact numbers. If they are defined globally and you don't want to change it, you can do the following:


ClearAll[T, ω];
T = 0.01; ω = 2 Pi/T;
Chop[Block[{T = $T, ω = $w}, (1/T)*
Integrate[
Exp[-I*3*ω*t]*(β Cos[ω t]^2) Exp[
I*1*ω*t], {t, 0, T}]] /. {$T -> T, $w -> ω}]



0.25 β



Using your equations:


ClearAll[T, ω];
T = 0.01; ω = 2 Pi/T;
int[a_, b_, t_, k_] :=
Chop[Block[{T = $T, ω = $w},
HB = {{0, -(a*Cos[ω t]^2 +
b*Exp[I k a])}, {-(a*Cos[ω t]^2 + b*Exp[-I k a]), 0}};

{{0, -(a*Cos[ω t]^2 +
b*Exp[I k a])}, {-(a*Cos[ω t]^2 + b*Exp[-I k a]), 0}};
(1/T) Integrate[Exp[-I*3*ω*t] HB Exp[I*1*ω*t], {t, 0, T}]] /. {$T -> T, $w -> ω}]

int[-β, 0, t, k]


{{0, 0.25 β}, {0.25 β, 0}}



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...