Skip to main content

simplifying expressions - Different outputs for Simplify


In at least one instance, the same Simplify command (without using options) produces very different results on two of my computers, one Windows 7 and the other Windows 10. Here is the code:


sf = Simplify;

r1 = (-1 + (-11 - a^2 + 2 a^4) b^2 + (8 - 3 a^2) b^3 + (-2 + a^2) b^4 -
b (-6 - 3 a^2 + a Sqrt[b (2 + (-2 + a^2) b)] +
2 a^3 Sqrt[b (2 + (-2 + a^2) b)]) -
a (Sqrt[b (2 + (-2 + a^2) b)] - 3 Sqrt[b^5 (2 + (-2 + a^2) b)] + Sqrt[

b^7 (2 + (-2 + a^2) b)]))/(-1 + b - a^2 b +
a Sqrt[b (2 + (-2 + a^2) b)])^2;

This is what I got on one of the computers, the Windows 10 one:


Dr1 = D[r1, b] // sf 

(* (6 + 3 a^2 + 2 (-11 - a^2 + 2 a^4) b + 3 (8 - 3 a^2) b^2 +
4 (-2 + a^2) b^3 - (a (1 + (-2 + a^2) b))/Sqrt[b (2 + (-2 + a^2) b)] - (
a b (1 + (-2 + a^2) b))/Sqrt[b (2 + (-2 + a^2) b)] - (
2 a^3 b (1 + (-2 + a^2) b))/Sqrt[b (2 + (-2 + a^2) b)] -

a Sqrt[b (2 + (-2 + a^2) b)] - 2 a^3 Sqrt[b (2 + (-2 + a^2) b)] + (
a b^6 (-7 - 4 (-2 + a^2) b))/Sqrt[b^7 (2 + (-2 + a^2) b)] + (
3 a b^4 (5 + 3 (-2 + a^2) b))/Sqrt[b^5 (2 + (-2 + a^2) b)])/(-1 + b -
a^2 b + a Sqrt[
b (2 + (-2 + a^2) b)])^2 - (2 (1 - a^2 + (a - 2 a b + a^3 b)/Sqrt[
b (2 + (-2 + a^2) b)]) (-1 + (-11 - a^2 + 2 a^4) b^2 + (8 -
3 a^2) b^3 + (-2 + a^2) b^4 -
b (-6 - 3 a^2 + a Sqrt[b (2 + (-2 + a^2) b)] +
2 a^3 Sqrt[b (2 + (-2 + a^2) b)]) -
a (Sqrt[b (2 + (-2 + a^2) b)] - 3 Sqrt[b^5 (2 + (-2 + a^2) b)] + Sqrt[

b^7 (2 + (-2 + a^2) b)])))/(-1 + b - a^2 b +
a Sqrt[b (2 + (-2 + a^2) b)])^3 *)

And this, much better expression is what I got on the other computer, the Windows 7 one:


D[r1, b] // sf

(* (2 (-1 + b)^2 b (4 (-2 + 9 a^2 - 8 a^4 + 2 a^6) b^4 -
3 a Sqrt[b (2 + (-2 + a^2) b)] -
b (-8 - 11 a^2 + 10 a Sqrt[b (2 + (-2 + a^2) b)] +
10 a^3 Sqrt[b (2 + (-2 + a^2) b)]) -

b^2 (24 - 14 a^2 - 14 a^4 - 29 a Sqrt[b (2 + (-2 + a^2) b)] +
14 a^3 Sqrt[b (2 + (-2 + a^2) b)] +
4 a^5 Sqrt[b (2 + (-2 + a^2) b)]) -
b^3 (-24 + 61 a^2 - 18 a^4 - 4 a^6 + 16 a Sqrt[b (2 + (-2 + a^2) b)] -
24 a^3 Sqrt[b (2 + (-2 + a^2) b)] +
8 a^5 Sqrt[b (2 + (-2 + a^2) b)])))/(Sqrt[
b (2 + (-2 + a^2) b)] (-a b + Sqrt[b (2 + (-2 + a^2) b)])^3 (-1 + b -
a^2 b + a Sqrt[b (2 + (-2 + a^2) b)])^2) *)

Can I find the reason for this and make it the same on both computers? If so, how to do this? I may have changed global preferences for Simplify on the Windows 7 computer, but don't remember if or how or what I did concerning that. This behavior occurs both in Mathematica 11.2 and Mathematica 11.1.1.





Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...