Skip to main content

graphics - What is wrong with triangle PlotMarkers in v.10.0.0?



Bug introduced in 10.0.0 and fixed in 10.0.1




In Mathematica 10.0.0 we have built-in graphical triangle PlotMarkers. Let us look closer on them:


ListLinePlot[{{Missing[]}, {{0, 0}}}, PlotTheme -> "Monochrome", 
ImageSize -> 20, Ticks -> False, AxesOrigin -> {0, 0},
BaseStyle -> {Magnification -> 10, Thickness -> Tiny}]

ListLinePlot[{{Missing[]}, {{0, 0}}},
PlotTheme -> {"OpenMarkersThick", "LargeLabels"}, ImageSize -> 20,
Ticks -> False, AxesOrigin -> {0, 0},

BaseStyle -> {Magnification -> 10, Thickness -> Tiny}]


plot1


plot2



It is clear that there is something wrong with the triangles. Is this functionality implemented correctly?



Answer



The triangle plot markers


It is natural to expect that the triangle marker is placed in such a way that its center of mass (center of circumcircle) coincides with the point it marks. That's how it is implemented in all major scientific plotting software, for example Origin:



plot markers in Origin 7.5


Some time ago I published my own implementation of triangle-based plot markers. Let us check how the new markers are implemented:


ListLinePlot[{{Missing[]}, {{0, 0}}}, PlotTheme -> "Monochrome", 
ImageSize -> 10, Ticks -> False, AxesOrigin -> {0, 0},
BaseStyle -> {Magnification -> 10, Thickness -> Tiny}]
%[[1, 2, 2, 2, -1]] // InputForm


screenshot


GeometricTransformation[Inset[Graphics[{<...>

Line[{Offset[{0., 2.7625}],
Offset[{-2.7625, -2.022290355909023}],
Offset[{2.7625, -2.022290355909023}],
Offset[{0., 2.7625}]}]}], {0., 0.}],
{{{0., 0.}}, {{0., 0.}}}]

Apart of the fact that the curve is not closed, the triangle is positioned in a strange way: the "center" is placed on the


2.022290355909023/(2.7625 + 2.022290355909023)



0.4226497308103742



part of the height of the triangle instead of expected 1/3 (the center of circumcircle). So current implementation is clearly wrong and leads to producing incorrect plots. Here is an example of correct implementation:


Graphics[{AbsoluteThickness[1], JoinedCurve[
Line[{Offset[{0, 2}], Offset[{Sqrt[3], -1}],
Offset[{-Sqrt[3], -1}]}], CurveClosed -> True]},
ImageSize -> 10, Axes -> True, Ticks -> False, AxesOrigin -> {0, 0},
BaseStyle -> {Magnification -> 10, Thickness -> Tiny}]



screenshot



The following is correct implementation of both empty and filled triangle plot markers of strictly identical sizes with consistent explicit control over their sizes and thickness:


emptyUpTriangle = 
Graphics[{AbsoluteThickness[absoluteThickness],
JoinedCurve[Line[{Offset[size {0, 2}], Offset[size {Sqrt[3], -1}],
Offset[size {-Sqrt[3], -1}]}], CurveClosed -> True]},
AlignmentPoint -> {0, 0}];
filledUpTriangle =
Graphics[{Triangle[{Offset[size {0, 2} + absoluteThickness {0, 1}],

Offset[size {Sqrt[3], -1} + absoluteThickness {Sqrt[3/4], -1/2}],
Offset[size {-Sqrt[3], -1} + absoluteThickness {-Sqrt[3/4], -1/2}]}]},
AlignmentPoint -> {0, 0}];
{emptyLeftTriangle, filledLeftTriangle, emptyDownTriangle,
filledDownTriangle, emptyRightTriangle, filledRightTriangle} =
Flatten[{emptyUpTriangle, filledUpTriangle} /. {x_?NumericQ, y_?NumericQ} :>
RotationTransform[#][{x, y}] & /@ {Pi/2, Pi/3, -Pi/2}];

SeedRandom[12]
ListLinePlot[Accumulate /@ RandomReal[3, {8, 10}] Range[8],

PlotMarkers -> {emptyUpTriangle, filledUpTriangle, emptyLeftTriangle,
filledLeftTriangle, emptyDownTriangle, filledDownTriangle,
emptyRightTriangle, filledRightTriangle}, AspectRatio -> 1]

plot


And here is an extended version which includes open triangles with white filling:


size = 4; absoluteThickness = 2;

triangle[Up, Empty] =
Graphics[{AbsoluteThickness[absoluteThickness],

JoinedCurve[Line[{Offset[size {0, 2}], Offset[size {Sqrt[3], -1}],
Offset[size {-Sqrt[3], -1}]}], CurveClosed -> True]},
AlignmentPoint -> {0, 0}];
triangle[Up, Filled] =
Graphics[{Triangle[{Offset[size {0, 2} + absoluteThickness {0, 1}],
Offset[size {Sqrt[3], -1} + absoluteThickness {Sqrt[3/4], -1/2}],
Offset[size {-Sqrt[3], -1} + absoluteThickness {-Sqrt[3/4], -1/2}]}]},
AlignmentPoint -> {0, 0}];
triangle[Up, Open] =
Graphics[{{White, Triangle[{Offset[size {0, 2}], Offset[size {Sqrt[3], -1}],

Offset[size {-Sqrt[3], -1}]}]}, {AbsoluteThickness[absoluteThickness],
JoinedCurve[Line[{Offset[size {0, 2}], Offset[size {Sqrt[3], -1}],
Offset[size {-Sqrt[3], -1}]}], CurveClosed -> True]}},
AlignmentPoint -> {0, 0}];
triangle[dir_: {Up, Right, Down, Left}, fill_: {Empty, Filled, Open}] :=
triangle[Up, fill] /. {x_?NumericQ, y_?NumericQ} :>
RotationTransform[dir /. {Right -> -Pi/2, Down -> Pi/3, Left -> Pi/2}][{x, y}]

pl = ListPlot[Flatten[Table[{{n, y}}, {y, Range[2]}, {n, 6}], 1],
PlotMarkers ->

Flatten@Table[triangle[dir, fill],
{dir, {Up, Right, Down, Left}}, {fill, {Empty, Filled, Open}}],
GridLines -> {Range[6], Range[2]},
PlotRange -> {{0, 7}, {0, 3}}, Axes -> False, Frame -> True]

plot2




Other plot markers


Not only triangle plot markers have problems:


ListLinePlot[{{#, 0}} & /@ Range[5], PlotTheme -> "Monochrome", 

ImageSize -> 70, Ticks -> False, Axes -> False, Frame -> True,
BaseStyle -> {Magnification -> 15, Thickness -> Tiny},
PlotRange -> {{0.5, 5.5}, All}, AspectRatio -> 1/10,
FrameTicks -> None, BaselinePosition -> Center,
GridLines -> {Range[5], {0}},
GridLinesStyle -> Directive[{Dashing[None], Gray}],
Method -> {"GridLinesInFront" -> True}]
Cases[%, g_Graphics :>
Show[g, ImageSize -> 8, BaseStyle -> {Magnification -> 16},
BaselinePosition -> Center], Infinity]

Cases[%[[4]], _Line, Infinity]


screenshot


{Line[{Offset[{-2.5, -2.5}],   Offset[{2.125, -2.125}], 
Offset[{2.125, 2.125}], Offset[{-2.125, 2.125}],
Offset[{-2.125, -2.125}]}]}

As one can see, the square starts from the point {-2.5, -2.5} and ends in {-2.125, -2.125}!


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...