Skip to main content

differential equations - PDE with Stefan Conditions, a.k.a variable boundary


I want to solve the one-dimensional one-phase Stefan problem, but I don't know how to make Mathematica understand the conditions.


If you are not familiar with what I'm asking please refer to this wikipedia article: http://en.wikipedia.org/wiki/Stefan_problem#Mathematical_formulation


This is what I have so far. Clearly, it doesn't work.


NDSolve[
{D[u[x, t], t] == D[u[x, t], {x, 2}],

(-D[u[x, t], x] /. x -> 0) == 1,
u[s[t], t] == 0,
D[s[t]] == (-D[u[x, t], x] /. x -> s[t]),
u[x, 0] == 0,
s[0] == 0
},
{u, s}, {x, 0, s[t]}, {t, 0, 10}]

I hope there is someone out there with a magical code


I'm using Mathematica 10.



Thanks!



Answer



One can do it semi-automatically. Let us introduce a normalized variable ξ=xs(t),ξ∈[0,1]

and make a simple finite difference method over ξ.


The differential equation in new variables is


ClearAll[u, s, x, t, ξ]
D[u[x/s[t], t], t] == D[u[x/s[t], t], x, x] /. x -> ξ s[t]

enter image description here


If we divide the interval [0,1] by n subintervals we come to the following finite difference scheme


n = 100;

δξ = 1./n;

ClearAll[dv, t];
dv[v_List] := With[{s = First@v, u = Rest@v},
With[{ds = u[[-1]]/(s δξ),
ξ = N@Range[n - 1]/n,
d1 = ListCorrelate[{-0.5, 0, 0.5}/δξ, #] &,
d2 = ListCorrelate[{1, -2, 1}/δξ^2, #] &},
Prepend[d2[#]/s^2 + ξ ds d1[#]/s &@Join[{u[[1]] + s δξ}, u, {0.}], ds]
]];

s0 = 0.001;
v0 = Prepend[ConstantArray[0., n - 1], s0];
sol = NDSolve[{v'[t] == dv[v[t]], v[0] == v0}, v, {t, 0, 1}][[1, 1, 2]];

Here v contains s (the first element) and u (the rest list).


It remains only to decompose the interpolation function sol and return to the initial variable x


Needs@"DifferentialEquations`InterpolatingFunctionAnatomy`";
values = InterpolatingFunctionValuesOnGrid@sol;
valu = Transpose@Join[{#[[2]] + δξ #[[1]]}, Rest@#, {0 #[[1]]}] &@
Transpose@InterpolatingFunctionValuesOnGrid@sol;

vals = InterpolatingFunctionValuesOnGrid[sol][[All, 1]];
t = Flatten@InterpolatingFunctionGrid@sol;
ξ = Range[0., n]/n;
s = ListInterpolation[vals, t];
uξ = ListInterpolation[valu, {t, ξ}];
u = If[#2 < s[#], uξ[#, #2/s[#]], 0.] &;

Visualization of the result


Show[{DensityPlot[u[t, x], {t, 0, 1}, {x, 0, 1}, FrameLabel -> {"t", "x"}], 
Plot[s[t], {t, 0, 1}, PlotStyle -> {Red, Dashed}]}]


enter image description here


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...