Skip to main content

compile - List of compilable functions


Is there somewhere a list on the functions that Compile can compile, or the cases in which a particular function can be compiled that I haven't found? I'd be glad even with a list of some of them which surprisingly aren't compilable, and how to do without them.


I am not happy every time I have to rewrite or redesign code because it seems to make external calls for functions I didn't expect. I'd like to know how you handle all that, what you keep in mind.



Answer



Yes, but this only exists in version 8 onwards and is undocumented:


Compile`CompilerFunctions[] // Sort

giving, for reference:


{Abs, AddTo, And, Append, AppendTo, Apply, ArcCos, ArcCosh, ArcCot, ArcCoth, ArcCsc,
ArcCsch, ArcSec, ArcSech, ArcSin, ArcSinh, ArcTan, ArcTanh, Arg, Array, ArrayDepth,

Internal`Bag, Internal`BagPart, BitAnd, BitNot, BitOr, BitXor, Block, BlockRandom, Boole,
Break, Cases, Catch, Ceiling, Chop, Internal`CompileError, System`Private`CompileSymbol,
Complement, ComposeList, CompoundExpression, Conjugate, ConjugateTranspose, Continue,
Cos, Cosh, Cot, Coth, Count, Csc, Csch, Decrement, Delete, DeleteCases, Dimensions,
Divide, DivideBy, Do, Dot, Drop, Equal, Erf, Erfc, EvenQ, Exp, Fibonacci, First,
FixedPoint, FixedPointList, Flatten, NDSolve`FEM`FlattenAll, Floor, Fold, FoldList, For,
FractionalPart, FreeQ, Compile`GetElement, Goto, Greater, GreaterEqual, Gudermannian,
Haversine, If, Im, Implies, Increment, Inequality, Compile`InnerDo, Insert,
IntegerDigits, IntegerPart, Intersection, InverseGudermannian, InverseHaversine,
Compile`IteratorCount, Join, Label, Last, Length, Less, LessEqual, List, Log, Log10,

Log2, LucasL, Map, MapAll, MapAt, MapIndexed, MapThread, NDSolve`FEM`MapThreadDot,
MatrixQ, Max, MemberQ, Min, Minus, Mod, Compile`Mod1, Module, Most, N, Negative, Nest,
NestList, NonNegative, Not, OddQ, Or, OrderedQ, Out, Outer, Part, Partition, Piecewise,
Plus, Position, Positive, Power, PreDecrement, PreIncrement, Prepend, PrependTo, Product,
Quotient, Random, RandomChoice, RandomComplex, RandomInteger, RandomReal, RandomSample,
RandomVariate, Range, Re, ReplacePart, Rest, Return, Reverse, RotateLeft, RotateRight,
Round, RuleCondition, SameQ, Scan, Sec, Sech, SeedRandom, Select, Set, SetDelayed,
Compile`SetIterate, Sign, Sin, Sinc, Sinh, Sort, Sqrt, Internal`Square, Internal`StuffBag,
Subtract, SubtractFrom, Sum, Switch, Table, Take, Tan, Tanh, TensorRank, Throw, Times,
TimesBy, Tr, Transpose, Unequal, Union, Unitize, UnitStep, UnsameQ, VectorQ, Which,

While, With, Xor}

As of Mathematica 10.0.2, there are also the following functions:


{Gamma, Indexed, LogGamma, LogisticSigmoid, Internal`ReciprocalSqrt}

As of Mathematica 11, there are also the following functions:


{Internal`Expm1, Internal`Log1p, Ramp}

As of Mathematica 11.2, there are also the following functions:


{RealAbs, RealSign}


About Tr:


Please note that Tr appears in this list, but cannot actually be compiled without a call to MainEvaluate[]. It is unclear if this is deliberate or a bug.




Edit: additional functions


I have just discovered the symbol Internal`CompileValues, which provides various definitions and function calls needed to compile further functions not in the list above. Using the following code,


Internal`CompileValues[]; (* to trigger auto-load *)
ClearAttributes[Internal`CompileValues, ReadProtected];
syms = DownValues[Internal`CompileValues] /.
HoldPattern[Verbatim[HoldPattern][Internal`CompileValues[sym_]] :> _] :>

sym;
Complement[syms, Compile`CompilerFunctions[]]

we get some more compilable functions as follows:


{Accumulate, ConstantArray, Cross, Depth, Det, DiagonalMatrix,
Differences, NDSolve`FEM`FEMDot, NDSolve`FEM`FEMHold,
NDSolve`FEM`FEMInverse, NDSolve`FEM`FEMPart, NDSolve`FEM`FEMTDot,
NDSolve`FEM`FEMTotalTimes, NDSolve`FEM`FEMZeroMatrix, FromDigits,
Identity, IdentityMatrix, Inverse, LinearSolve, Mean, Median, Nand,
NestWhile, NestWhileList, Nor, Norm, Ordering, PadLeft, PadRight,

Permutations, Ratios, Signature, SquareWave, StandardDeviation,
Tally, Total, TrueQ, Variance}

Looking at the definition of Internal`CompileValues[sym] for sym in the list above will provide some additional information about how these functions are compiled. This can range from type information (for e.g. Inverse), through to an implementation in terms of lower-level functions (e.g. NestWhileList). One can presumably also make one's own implementations of non-compilable functions using this mechanism, giving Compile the ability to compile a wider range of functions than it usually would be able to.


As of Mathematica 10.3, there are also the following functions:


{DeleteDuplicates, Region`Mesh`SmallMatrixRank,
Region`Mesh`SmallQRSolve, Region`Mesh`SmallSingularValues,
Region`Mesh`SmallSingularValueSystem, Region`Mesh`SmallSVDSolve,
NDSolve`SwitchingVariable}


As of Mathematica 11, there are also the following functions:


{NearestFunction, RegionDistanceFunction, RegionMemberFunction, RegionNearestFunction}



Edit 2: the meaning of the second list


In response to a recent question, I want to be clear that the presence of a function in the second list given above does not necessarily mean it can be compiled into a form free of MainEvaluate calls. If a top-level function is already highly optimized (as e.g. LinearSolve is), the purpose of Internal`CompileValues[func] may be solely to provide type information on the return value, assuming that this can be inferred from the types of the arguments or some other salient information. This mechanism allows more complex functions that call these highly-optimized top-level functions to be compiled more completely since there is no longer any question of what the return type may be and so further unnecessary MainEvaluate calls may be avoided. It does not imply that the use of MainEvaluate is unnecessary to call the function itself.


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....