Skip to main content

compile - List of compilable functions


Is there somewhere a list on the functions that Compile can compile, or the cases in which a particular function can be compiled that I haven't found? I'd be glad even with a list of some of them which surprisingly aren't compilable, and how to do without them.


I am not happy every time I have to rewrite or redesign code because it seems to make external calls for functions I didn't expect. I'd like to know how you handle all that, what you keep in mind.



Answer



Yes, but this only exists in version 8 onwards and is undocumented:


Compile`CompilerFunctions[] // Sort

giving, for reference:


{Abs, AddTo, And, Append, AppendTo, Apply, ArcCos, ArcCosh, ArcCot, ArcCoth, ArcCsc,
ArcCsch, ArcSec, ArcSech, ArcSin, ArcSinh, ArcTan, ArcTanh, Arg, Array, ArrayDepth,

Internal`Bag, Internal`BagPart, BitAnd, BitNot, BitOr, BitXor, Block, BlockRandom, Boole,
Break, Cases, Catch, Ceiling, Chop, Internal`CompileError, System`Private`CompileSymbol,
Complement, ComposeList, CompoundExpression, Conjugate, ConjugateTranspose, Continue,
Cos, Cosh, Cot, Coth, Count, Csc, Csch, Decrement, Delete, DeleteCases, Dimensions,
Divide, DivideBy, Do, Dot, Drop, Equal, Erf, Erfc, EvenQ, Exp, Fibonacci, First,
FixedPoint, FixedPointList, Flatten, NDSolve`FEM`FlattenAll, Floor, Fold, FoldList, For,
FractionalPart, FreeQ, Compile`GetElement, Goto, Greater, GreaterEqual, Gudermannian,
Haversine, If, Im, Implies, Increment, Inequality, Compile`InnerDo, Insert,
IntegerDigits, IntegerPart, Intersection, InverseGudermannian, InverseHaversine,
Compile`IteratorCount, Join, Label, Last, Length, Less, LessEqual, List, Log, Log10,

Log2, LucasL, Map, MapAll, MapAt, MapIndexed, MapThread, NDSolve`FEM`MapThreadDot,
MatrixQ, Max, MemberQ, Min, Minus, Mod, Compile`Mod1, Module, Most, N, Negative, Nest,
NestList, NonNegative, Not, OddQ, Or, OrderedQ, Out, Outer, Part, Partition, Piecewise,
Plus, Position, Positive, Power, PreDecrement, PreIncrement, Prepend, PrependTo, Product,
Quotient, Random, RandomChoice, RandomComplex, RandomInteger, RandomReal, RandomSample,
RandomVariate, Range, Re, ReplacePart, Rest, Return, Reverse, RotateLeft, RotateRight,
Round, RuleCondition, SameQ, Scan, Sec, Sech, SeedRandom, Select, Set, SetDelayed,
Compile`SetIterate, Sign, Sin, Sinc, Sinh, Sort, Sqrt, Internal`Square, Internal`StuffBag,
Subtract, SubtractFrom, Sum, Switch, Table, Take, Tan, Tanh, TensorRank, Throw, Times,
TimesBy, Tr, Transpose, Unequal, Union, Unitize, UnitStep, UnsameQ, VectorQ, Which,

While, With, Xor}

As of Mathematica 10.0.2, there are also the following functions:


{Gamma, Indexed, LogGamma, LogisticSigmoid, Internal`ReciprocalSqrt}

As of Mathematica 11, there are also the following functions:


{Internal`Expm1, Internal`Log1p, Ramp}

As of Mathematica 11.2, there are also the following functions:


{RealAbs, RealSign}


About Tr:


Please note that Tr appears in this list, but cannot actually be compiled without a call to MainEvaluate[]. It is unclear if this is deliberate or a bug.




Edit: additional functions


I have just discovered the symbol Internal`CompileValues, which provides various definitions and function calls needed to compile further functions not in the list above. Using the following code,


Internal`CompileValues[]; (* to trigger auto-load *)
ClearAttributes[Internal`CompileValues, ReadProtected];
syms = DownValues[Internal`CompileValues] /.
HoldPattern[Verbatim[HoldPattern][Internal`CompileValues[sym_]] :> _] :>

sym;
Complement[syms, Compile`CompilerFunctions[]]

we get some more compilable functions as follows:


{Accumulate, ConstantArray, Cross, Depth, Det, DiagonalMatrix,
Differences, NDSolve`FEM`FEMDot, NDSolve`FEM`FEMHold,
NDSolve`FEM`FEMInverse, NDSolve`FEM`FEMPart, NDSolve`FEM`FEMTDot,
NDSolve`FEM`FEMTotalTimes, NDSolve`FEM`FEMZeroMatrix, FromDigits,
Identity, IdentityMatrix, Inverse, LinearSolve, Mean, Median, Nand,
NestWhile, NestWhileList, Nor, Norm, Ordering, PadLeft, PadRight,

Permutations, Ratios, Signature, SquareWave, StandardDeviation,
Tally, Total, TrueQ, Variance}

Looking at the definition of Internal`CompileValues[sym] for sym in the list above will provide some additional information about how these functions are compiled. This can range from type information (for e.g. Inverse), through to an implementation in terms of lower-level functions (e.g. NestWhileList). One can presumably also make one's own implementations of non-compilable functions using this mechanism, giving Compile the ability to compile a wider range of functions than it usually would be able to.


As of Mathematica 10.3, there are also the following functions:


{DeleteDuplicates, Region`Mesh`SmallMatrixRank,
Region`Mesh`SmallQRSolve, Region`Mesh`SmallSingularValues,
Region`Mesh`SmallSingularValueSystem, Region`Mesh`SmallSVDSolve,
NDSolve`SwitchingVariable}


As of Mathematica 11, there are also the following functions:


{NearestFunction, RegionDistanceFunction, RegionMemberFunction, RegionNearestFunction}



Edit 2: the meaning of the second list


In response to a recent question, I want to be clear that the presence of a function in the second list given above does not necessarily mean it can be compiled into a form free of MainEvaluate calls. If a top-level function is already highly optimized (as e.g. LinearSolve is), the purpose of Internal`CompileValues[func] may be solely to provide type information on the return value, assuming that this can be inferred from the types of the arguments or some other salient information. This mechanism allows more complex functions that call these highly-optimized top-level functions to be compiled more completely since there is no longer any question of what the return type may be and so further unnecessary MainEvaluate calls may be avoided. It does not imply that the use of MainEvaluate is unnecessary to call the function itself.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...