Skip to main content

equation solving - Rationalizing expressions with Roots


I'm looking for a way to rationalize a very ugly expression given by the code I pasted in. What do I mean by this? The expression is a solution to the zero locus of some polynomial. In my previous question Solving system of equations with Root I had a very simple expression and I can't generalize this solution to the new case. What I want to do: I want to get rid of the Roots and get an expression for zero locus of some polynomial. Let's say that $y=\textrm{my code}$ so,$y-\textrm{my code}=0$. I want to rationalize this expression to get rid of the roots and have algebraic expression given by the radicals looking like $a_1 y^1 + a_2 y^2 +...a^n y^n =0$, where $a_i$ are some coefficients dependent on x and $y^i$ is $i$-th power of y. It would be nice to have a solution that works for wider classes of those equations, not only the one I pasted in. How can one do that? Is there a function in Mathematica that can do such things? Long story short: I want to do the same thing as in my previous question but with much more complicated expression.


Root[x^9 + 
x^7 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +

35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 - 12 x^2 +
6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 + 8 x^7) #1^6 + (-1 +
x + 7 x^2 - 7 x^3 - 8 x^4 + 45 x^5 + 45 x^6) #1^7 &, 3] -
3 x^7 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +

32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 - 12 x^2 +
6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 + 8 x^7) #1^6 + (-1 +
x + 7 x^2 - 7 x^3 - 8 x^4 + 45 x^5 + 45 x^6) #1^7 &,
3]^2 - 2 x^5 Root[-x^10 + (2 x^8 + 19 x^9 +
26 x^10) #1 + (x^6 + 20 x^7 + 35 x^8 - 40 x^9 -
64 x^10) #1^2 + (-2 x^4 + 3 x^5 + 12 x^6 - 85 x^7 -
129 x^8 + 32 x^9 + 32 x^10) #1^3 + (-x^2 + 10 x^4 -
43 x^5 - 80 x^6 + 123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 +

x^3 - 22 x^4 + 113 x^5 + 169 x^6 - 75 x^7 -
52 x^8) #1^5 + (1 - 12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 -
146 x^6 + 8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^3 +
3 x^5 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 - 12 x^2 +

6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 + 8 x^7) #1^6 + (-1 +
x + 7 x^2 - 7 x^3 - 8 x^4 + 45 x^5 + 45 x^6) #1^7 &, 3]^4 +
x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +
35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 - 12 x^2 +
6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 + 8 x^7) #1^6 + (-1 +
x + 7 x^2 - 7 x^3 - 8 x^4 + 45 x^5 + 45 x^6) #1^7 &, 3]^5 -

x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +
35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 - 12 x^2 +
6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 + 8 x^7) #1^6 + (-1 +
x + 7 x^2 - 7 x^3 - 8 x^4 + 45 x^5 + 45 x^6) #1^7 &,
3]^6 + (-6 x^8 Root[-x^10 + (2 x^8 + 19 x^9 +
26 x^10) #1 + (x^6 + 20 x^7 + 35 x^8 - 40 x^9 -

64 x^10) #1^2 + (-2 x^4 + 3 x^5 + 12 x^6 - 85 x^7 -
129 x^8 + 32 x^9 + 32 x^10) #1^3 + (-x^2 + 10 x^4 -
43 x^5 - 80 x^6 + 123 x^7 + 146 x^8) #1^4 + (-x +
6 x^2 + x^3 - 22 x^4 + 113 x^5 + 169 x^6 - 75 x^7 -
52 x^8) #1^5 + (1 - 12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 -
146 x^6 + 8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 -
8 x^4 + 45 x^5 + 45 x^6) #1^7 &, 3] +
x^5 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +

32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^2 -
3 x^6 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +

123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^2 +
x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +

113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^3 +
2 x^4 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -

12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^3 +
12 x^6 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +

8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^3 -
x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +

45 x^5 + 45 x^6) #1^7 &, 3]^4 -
3 x^2 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^5 -

6 x^4 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^5 +
3 x^2 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +

20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &,
3]^6) #1 + (15 x^7 Root[-x^10 + (2 x^8 + 19 x^9 +
26 x^10) #1 + (x^6 + 20 x^7 + 35 x^8 - 40 x^9 -

64 x^10) #1^2 + (-2 x^4 + 3 x^5 + 12 x^6 - 85 x^7 -
129 x^8 + 32 x^9 + 32 x^10) #1^3 + (-x^2 + 10 x^4 -
43 x^5 - 80 x^6 + 123 x^7 + 146 x^8) #1^4 + (-x +
6 x^2 + x^3 - 22 x^4 + 113 x^5 + 169 x^6 - 75 x^7 -
52 x^8) #1^5 + (1 - 12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 -
146 x^6 + 8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 -
8 x^4 + 45 x^5 + 45 x^6) #1^7 &, 3]^2 -
3 x^4 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +

32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^3 +
2 x^5 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +

123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^3 -
2 x^2 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +

113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^4 -
3 x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -

12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^4 -
18 x^5 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +

8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^4 +
3 x Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +

45 x^5 + 45 x^6) #1^7 &, 3]^5 +
2 x^2 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^5 +

6 x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^5 -
3 x Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +

20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^6 +
3 x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +

3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &,
3]^6) #1^2 + (-20 x^6 Root[-x^10 + (2 x^8 + 19 x^9 +
26 x^10) #1 + (x^6 + 20 x^7 + 35 x^8 - 40 x^9 -
64 x^10) #1^2 + (-2 x^4 + 3 x^5 + 12 x^6 - 85 x^7 -

129 x^8 + 32 x^9 + 32 x^10) #1^3 + (-x^2 + 10 x^4 -
43 x^5 - 80 x^6 + 123 x^7 + 146 x^8) #1^4 + (-x +
6 x^2 + x^3 - 22 x^4 + 113 x^5 + 169 x^6 - 75 x^7 -
52 x^8) #1^5 + (1 - 12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 -
146 x^6 + 8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 -
8 x^4 + 45 x^5 + 45 x^6) #1^7 &, 3]^3 +
3 x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +

123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^4 +
2 x^4 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +

113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^4 -
Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +
35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -

12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 + 45 x^5 +
45 x^6) #1^7 &, 3]^5 +
x Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +
35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +

8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^5 +
12 x^4 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +

45 x^5 + 45 x^6) #1^7 &, 3]^5 +
Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +
35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 + 45 x^5 +
45 x^6) #1^7 &, 3]^6 -

x Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +
35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^6 -
4 x^2 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +

20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &,
3]^6) #1^3 + (15 x^5 Root[-x^10 + (2 x^8 + 19 x^9 +
26 x^10) #1 + (x^6 + 20 x^7 + 35 x^8 - 40 x^9 -

64 x^10) #1^2 + (-2 x^4 + 3 x^5 + 12 x^6 - 85 x^7 -
129 x^8 + 32 x^9 + 32 x^10) #1^3 + (-x^2 + 10 x^4 -
43 x^5 - 80 x^6 + 123 x^7 + 146 x^8) #1^4 + (-x +
6 x^2 + x^3 - 22 x^4 + 113 x^5 + 169 x^6 - 75 x^7 -
52 x^8) #1^5 + (1 - 12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 -
146 x^6 + 8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 -
8 x^4 + 45 x^5 + 45 x^6) #1^7 &, 3]^4 -
x^2 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +

32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^5 -
3 x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +

123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^5 +
x Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +
35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +

113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &, 3]^6 -
3 x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -

12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +
45 x^5 + 45 x^6) #1^7 &,
3]^6) #1^4 + (-6 x^4 Root[-x^10 + (2 x^8 + 19 x^9 +
26 x^10) #1 + (x^6 + 20 x^7 + 35 x^8 - 40 x^9 -
64 x^10) #1^2 + (-2 x^4 + 3 x^5 + 12 x^6 - 85 x^7 -
129 x^8 + 32 x^9 + 32 x^10) #1^3 + (-x^2 + 10 x^4 -
43 x^5 - 80 x^6 + 123 x^7 + 146 x^8) #1^4 + (-x +
6 x^2 + x^3 - 22 x^4 + 113 x^5 + 169 x^6 - 75 x^7 -
52 x^8) #1^5 + (1 - 12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 -

146 x^6 + 8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 -
8 x^4 + 45 x^5 + 45 x^6) #1^7 &, 3]^5 +
x^2 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 +
20 x^7 + 35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 +
3 x^5 + 12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 -
12 x^2 + 6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 +
8 x^7) #1^6 + (-1 + x + 7 x^2 - 7 x^3 - 8 x^4 +

45 x^5 + 45 x^6) #1^7 &, 3]^6) #1^5 +
x^3 Root[-x^10 + (2 x^8 + 19 x^9 + 26 x^10) #1 + (x^6 + 20 x^7 +
35 x^8 - 40 x^9 - 64 x^10) #1^2 + (-2 x^4 + 3 x^5 +
12 x^6 - 85 x^7 - 129 x^8 + 32 x^9 +
32 x^10) #1^3 + (-x^2 + 10 x^4 - 43 x^5 - 80 x^6 +
123 x^7 + 146 x^8) #1^4 + (-x + 6 x^2 + x^3 - 22 x^4 +
113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) #1^5 + (1 - 12 x^2 +
6 x^3 + 21 x^4 - 115 x^5 - 146 x^6 + 8 x^7) #1^6 + (-1 +
x + 7 x^2 - 7 x^3 - 8 x^4 + 45 x^5 + 45 x^6) #1^7 &,
3]^6 #1^6 &, 1];


Edit: Example of an expression with the new problem: pastebin.com/uZLmJ6SF (I'm posting a link since the code as you can see is way too long) - I can't somehow resolve the issue of trivial solution. Why is it coming out this way? Function res from the answer gives value 1.



Answer



Because the enormous expression in the question contains two levels of Root functions, it can be represented as the solution of two polynomials in two variables, y and an auxiliary variable, say, z. With the expression designated s for convenience, the two equations are readily derived, as follows. To obtain the first polynomial, extract the First argument of the outer Root, for instance by s // First, replace the inner Root by z, and apply the expression to y.


eq1 = ((s // First) /. Root[__] -> z)[y] == 0
(* x^9 + x^7 z - 3 x^7 z^2 - 2 x^5 z^3 + 3 x^5 z^4 + x^3 z^5 - x^3 z^6 +
x^3 y^6 z^6 + y^3 (-20 x^6 z^3 + 3 x^3 z^4 + 2 x^4 z^4 - z^5 + x z^5 +
12 x^4 z^5 + z^6 - x z^6 - 4 x^2 z^6) + y^5 (-6 x^4 z^5 + x^2 z^6) +
y (-6 x^8 z + x^5 z^2 - 3 x^6 z^2 + x^3 z^3 + 2 x^4 z^3 +
12 x^6 z^3 - x^3 z^4 - 3 x^2 z^5 - 6 x^4 z^5 + 3 x^2 z^6) +

y^4 (15 x^5 z^4 - x^2 z^5 - 3 x^3 z^5 + x z^6 - 3 x^3 z^6) +
y^2 (15 x^7 z^2 - 3 x^4 z^3 + 2 x^5 z^3 - 2 x^2 z^4 - 3 x^3 z^4 -
18 x^5 z^4 + 3 x z^5 + 2 x^2 z^5 + 6 x^3 z^5 - 3 x z^6 + 3 x^3 z^6) == 0 *)

To obtain the second polynomial, extract the inner Root from s, here with Cases, and apply the result to z.


eq2 = (Union@Cases[s, _Root, {4}])[[1, 1]][z] == 0
(* -x^10 + (2 x^8 + 19 x^9 + 26 x^10) z + (x^6 + 20 x^7 + 35 x^8 -
40 x^9 - 64 x^10) z^2 + (-2 x^4 + 3 x^5 + 12 x^6 - 85 x^7 -
129 x^8 + 32 x^9 + 32 x^10) z^3 + (-x^2 + 10 x^4 - 43 x^5 -
80 x^6 + 123 x^7 + 146 x^8) z^4 + (-x + 6 x^2 + x^3 - 22 x^4 +

113 x^5 + 169 x^6 - 75 x^7 - 52 x^8) z^5 + (1 - 12 x^2 + 6 x^3 +
21 x^4 - 115 x^5 - 146 x^6 + 8 x^7) z^6 + (-1 + x + 7 x^2 -
7 x^3 - 8 x^4 + 45 x^5 + 45 x^6) z^7 == 0 *)

Of course, this process introduces many more solutions. For instance, at x == 2,


NSolve[{eq1, eq2} /. x -> 2, {y, z}] // Length
(* 42 *)

all but six of which are complex. The four smaller real solutions over the domain {x, 2, 10} are given by


t = Transpose@Table[y /. NSolve[{eq1, eq2}, {y, z}, Reals], {x, 1.25, 10, .25}];

pt = ListLinePlot[t, DataRange -> {1.25, 10}, PlotRange -> {0, 8}]

enter image description here


This can be compared with the single curve, s.


ps = Plot[s, {x, 1.25, 10}, PlotRange -> {{0, 10}, {0, 8}}]

enter image description here


which is identical to the lowest curve in the preceding plot.


Addendum: Reduction to a single seventh-order polynomial


As pointed out by Daniel Lichtblau in a comment below, z can be eliminated between the two polynomials (as requested by the OP).



res = Resultant[First@eq1, First@eq2, z]

to produce a single but very lengthy forty-second order polynomial in y. Plotting it


tr = Transpose@Table[y /. NSolve[res, y, Reals], {x, 1.25, 10, .25}];
ptr = ListLinePlot[tr, DataRange -> {1.25, 10}, PlotRange -> {0, 8}]

yields a plot identical to the first one above. Unexpectedly, I found that


fac = Factor[res];

splits res into three factors, the first being x^47, the third a thirty-fifth order polynomial, and the second



fac[[2]]
(* x^5 + 2 x^3 y + x y^2 - x^2 y^2 - 2 x^3 y^2 + 7 x^4 y^2 + 12 x^5 y^2 - y^3 - x y^3 +
6 x^2 y^3 + 5 x^3 y^3 - 14 x^4 y^3 - 4 x y^4 - 17 x^2 y^4 - 3 x^3 y^4 + 32 x^4 y^4 +
32 x^5 y^4 + 7 x y^5 + 7 x^2 y^5 - 44 x^3 y^5 - 64 x^4 y^5 + 14 x^2 y^6 + 26 x^3 y^6 -
x^2 y^7 *)

It is this factor that contains the solution associated with s, as can be seen from


fs = Solve[fac[[2]] == 0, y];
ptf = Plot[Evaluate[y /. fs], {x, 1.25, 10}, PlotRange -> {{0, 10}, {0, 8}}]


enter image description here


in which the lower curve is identical to the curve for s. Thus, f[[2]] is the desired polynomial and is only seventh-order in y.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...