Skip to main content

numerical integration - Error in integral representation of Appell's series


It was originally asked here.


According to About the confluent versions of Appell Hypergeometric Function and Lauricella Functions the integral


$$\int_0^1t^{a-1}(1-t)^{c-a-1}(1-xt)^{-b}e^{yt}~dt $$


can be expressed as


$$\int_0^1t^{a-1}(1-t)^{c-a-1}(1-xt)^{-b}e^{yt}~dt=\dfrac{\Gamma(a)\Gamma(c-a)}{\Gamma(c)}\lim\limits_{k\to\infty}F_1\left(a,b,k,c;x,\dfrac{y}{k}\right).$$


It look like true, but gives numeric error. Look that, calculated by Mathematica:


F[a_?NumericQ, b_?NumericQ, c_?NumericQ, x_?NumericQ, y_?NumericQ] := 
NIntegrate[t^(a - 1) (1 - t)^(c - a - 1) (1 - x t)^(-b) Exp[ y t], {t, 0, 1}]


N[F[3/2, 1, 2, .4, .3], 20]
{2.8964403550198865`}

G[a_?NumericQ, b_?NumericQ, c_?NumericQ, x_?NumericQ, y_?NumericQ] :=
Gamma[a] Gamma[c - a]/Gamma[c] Limit[AppellF1[a, b, k, c, x, y/k],k -> Infinity]

N[G[3/2, 1, 2, .4, .3], 20]
{2.2854650559595466`}


where I was careful to ensure that $|x|<1,|y|<1$, and $\text{Re}(c)>\text{Re}(a)>0$, which are the condition of $F_1$.Note that the results are different. Furthermore, according to Wolfram Alpha


$$\lim\limits_{k\rightarrow \infty}F_1[3/2,1,k;2;0.4,\text{any/k}]=1.4549$$


So, is It a math issue or Mathematica issue?



Answer



There is a bug in the calculation of the large $k$ limit of AppellF1. This is easy to illustrate:


Needs["NumericalCalculus`"]
wrongLimit = Limit[AppellF1[3/2, 1, k, 2, 4/10, (3/10)/k], k -> Infinity];
correctLimit = NLimit[AppellF1[3/2, 1, k, 2, 4/10, (3/10)/k], k -> Infinity];
Plot[{AppellF1[3/2, 1, k, 2, 4/10, (3/10)/k], wrongLimit, correctLimit}, {k, .5, 5}
, PlotStyle -> {Blue, Directive[Red, Dashed], Directive[Green, Dashed]}, PlotRange -> {Automatic, {0, 3}}]


enter image description here


Perhaps the bug should be reported. In the meantime, you can use NLimit to get the correct limit. If you use NLimit in your definition of G, you get results that consistent with those of F (up to numerical inaccuracy).


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...