Skip to main content

syntax - Treat all variables as local in a module




In most languages, any variable defined inside a function is considered local.


# a Python function
def toRomanNumerals(num):
digits = # ...
string = ''
while num > 0:
(value, letters) = # ...
string = # ....
return string


In a Mathematica Module, however, we must specify a list of all variables to treat as local.


toRomanNumerals[i_Integer?Positive] := 
Module[{num = i, string = "", value, letters, digits},
digits = (* ... *);
While[num > 0, {value, letters} =
(* ... *);
string = (* ... *).];
string]

I sometimes find it tedious to manually type the list of all local variables. Do others feel the same way?



Is there a way to create a Module which treats all symbols defined inside as local?



Answer



This sort of programming is not my strength and I don't know Python. Reading the comments, perhaps this won't quite be perfect, but it might be good enough. It seems good enough for many purposes, at least in the way I interpret the question. It localizes all Symbols in the code that are in the "Global`" context and don't have Ownvalues or DownValues. If you want to exclude those with UpValues etc., then it should be easy how to modify it to do so.


ClearAll[localizeAll];
SetAttributes[localizeAll, HoldAll];
localizeAll[code_] :=
With[{vars = Join @@ Union @
Cases[Hold[code],
s_Symbol /; Context[s] == "Global`" &&
Length@OwnValues[s] == 0 && Length@DownValues[s] == 0 :> Hold[s],

Infinity,
Heads -> True]},
(* Module[{##}, code] & @@ vars *) (* original *)
vars /. Hold[v___] :> Module[{v}, code] (* Leonid Shifrin's suggestion *)
]

Example:


Clear[z];
z[a_] := a^2;
localizeAll[x = 2; y = x++; z[x] = y; q[r_] := s; z[2x]]

z[3]
z[x]
q[1]

(* 36 *)
(* 2 *)
(* x^2 *)
(* q[1] *)

Note that because z was defined, z[3] got redefined.



I think I might rather take a few seconds and type out the variables explicitly. It might save time in the long run.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]