Skip to main content

numerical integration - Surface area of intersecting spheres


Given a sphere of radius 1 centered at the origin and n spheres with radii ri centered at predefined coordinates, ci, in space, I am after the surface area of the unit sphere that is not intersected by any of the surrounding spheres. E.g. given the coordinates


c = {{{1.2,0,0},1}, {{0,-1.7,0},1.2}, {{0.7,1,0},0.9}, {{-0.5,-0.5,-0.5},1}}

I am interested in the (potentially) visible blue surface area in the graphic generated by:


{Blue, Sphere[{0,0,0},1], Red, Sphere[#,#2]&@@@c} // Graphics3D

In principle, I can obtain this area by evaluating the following integral


fun = Function[{t,p}, 

Evaluate[ Times @@
(UnitStep[Total[({Sin[t]*Cos[p],Sin[t]*Sin[p],Cos[t]}-#)^2]-#2^2]& @@@ c)
]
]
NIntegrate[Evaluate[fun[t,p]*Sin[t]], {t,0,Pi}, {p,0,2Pi}] // AbsoluteTiming

However, this approach is slow (in particular for a large numbers of spheres), and has convergence issues.


In an attempt to speed up the integral evaluation, I have devised the following code snippet, which is based on a naive (non-adaptive) application of the trapezoidal rule:


n = 1000;
theta = N@Pi/(n-1)*Range[0,n-1];

phi = 2*N@Pi/(2*n-1)*Range[0,2*n-1];
int1 = ConstantArray[1.,n];
int1[[{1,-1}]] = 0.5;
int2 = ConstantArray[1.,2*n];
int2[[{1,-1}]]=0.5;
(* Calculating ptsT is slow. However, it could be pre-calculated once ... *)
ptsT=Transpose[Outer[{Sin[#]*Cos[#2],Sin[#]*Sin[#2],Cos[#]}&, theta, phi], {3,2,1}];

(
lv = Transpose @

Fold[#1*UnitStep[Total[(ptsT - #2[[1]])^2] - #2[[2]]^2] &,
ConstantArray[1., {2 n, n}], c];
int1.((lv.int2)*Sin[theta]) *Pi/(n - 1) * 2*Pi/(2 n - 1)
) // AbsoluteTiming

How can this calculation be sped up? I am also interested in increasing the number of surrounding spheres to approximately 50.


The following code snippet will generate n spheres, which might be useful in comparing the performance of different approaches:


coords[n_] := Transpose@{
1.1 * Table[
With[{y = (2*i + 1)/n - 1, phi = i*(Pi*(3 - Sqrt[5]))},

{Cos[phi]*#, y, Sin[phi]*#} &[Sqrt[1 - y*y]]
],
{i, 0, n - 1}],
ConstantArray[0.3, n]}

Answer



I don't know your speed or precision requirements but here's an approach that yields a low precision estimate to your 50 sphere problem in a few seconds. It's based on the fact that the surface area of a sphere can be computed via ∫2π0∫π0sin(φ)dφdθ.

We'll simply write a test function to determine when a point is close to one of the spheres and use this to restrict the domain of integration.


ctest = Compile[{{phi, _Real}, {theta, _Real}, 
{centers, _Real, 2}, {radii, _Real, 1}},
Module[{p3d, result},
result = 1.0;

p3d = {Cos[theta] Sin[phi], Sin[theta] Sin[phi], Cos[phi]};
Do[If[Norm[p3d - centers[[i]]] < radii[[i]], result = 0.0;
Break[]],
{i, 1, Length[centers]}];
result]];
test[phi_?NumericQ, theta_?NumericQ,
ptsRadii : {{{_, _, _}, _} ..}] :=
ctest[phi, theta, Sequence @@ Transpose[ptsRadii]];
NIntegrate[
Sin[phi] test[phi, theta, coords[50]], {phi, 0, Pi}, {theta, 0, 2 Pi},

Method -> "AdaptiveMonteCarlo", PrecisionGoal -> 2] // AbsoluteTiming

(* Out: {4.800880, 1.72108} *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]