Skip to main content

Compile from String using function arguments


I want to return a Compiled function built from a string that uses values of local variables:


f[x_] := Module[{code},
code = "Compile[{},x,CompilationTarget->\"C\"]";
ToExpression[code]
];


While f[1] is a compiled function, f[1][] yields an error due to x.


Plain use of Compile works:


g[x_] := Module[{},
Compile[{}, x, CompilationTarget -> "C"]
];

with g[1][] returning 1.


Why does the compilation from string not recognize the local variable?


PS: I can work around this by inserting ToString[x,InputForm] into the string, but would like to understand better what happens.


PPS: In the original code, both parameters and code string are more involved.




Answer



I think that J.M.s advice to avoid using strings for that kind of meta-programming is the best answer you can get for that question. Looking up the meta-programming question to gather ideas how you can better tackle your specific problem is certainly worth the effort, for completeness here is his suggestion for your simplified example once more:


f[x_] := Module[{code},
code = Hold[Compile[{}, x, CompilationTarget -> "C"]];
ReleaseHold[code]
];

If you are new to Mathematica or have done similar things in other languages, you might think it is easier to manipulate strings but in Mathematica (and other homoiconic languages) it is in fact easier and much safer to manipulate held expressions. Due to its powerful pattern matcher Mathematica makes many of these tasks quite easy, although it sometimes is a bit tricky to handle evaluation order correctly.


You have also asked why your string approach doesn't work. To understand that you have to understand that at a deeper level a function definition in Mathematica is nothing but a definition of a global replacement rule. So evaluating a function will essentially insert the arguments literally into the RHS of the function definition and then evaluate the result. So you can think of function evaluation of some function definition like:


f[x_]:=Sin[Pi*x]


that f[5] will actually do something like:


ReleaseHold[With[{x=5},Hold[Sin[Pi*x]]]]

or


ReleaseHold[Hold[f[5]] /. f[x_] :> Sin[Pi*x]]

This will even work for any symbol with Hold attributes, as this example illustrates:


f[x_]:=Hold[x]
f[1]


With this picture in mind, it does probably not come as a surprise that inserting into strings does not work. This is one of the many reasons why doing meta-programming with strings is usually not the best solution.


If you really decide to go with strings (which I wouldn't suggest) you should realize that what you actually want to do here is to insert a constant into the code to compile -- when working with strings that is more like filling a string template than actually using a variable. Here is what I would do in that case:


f[x_] := Module[{code},
code = "Compile[{},`x`,CompilationTarget->\"C\"]";
ToExpression[TemplateApply[code, <|"x" -> x|>]]
];

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...