Skip to main content

equation solving - Find all roots of a function with parabolic cylinder functions in a range of the variable


I want to find all roots of a function involving Parabolic Cylinder Functions. In what follows, I define 2 variables $\xi1$ and $\xi2$, which in turn depend on $\omega$. My function is then defined as f. I go on defining g and h (where I take specific values for my parameters $M$ and $\lambda$ which are real and positive. I then plot the real and imaginary part of h to locate the roots. I would like, however, to be able to find all roots of $Im[h]$ (The real part is essentially 0) in a range of $\omega$, say from 0 to 50.


ξ1[ ω_] := (-1 + I) (ω/Sqrt[λ] - Sqrt[λ]/2)

ξ2[ ω_] := (-1 + I) (ω/Sqrt[λ] + Sqrt[λ]/2)

f := (I ParabolicCylinderD[I M/(2 λ), I ξ1[ ω]] - Sqrt[M/λ]*(-I - 1)/2*
ParabolicCylinderD[I M/(2 λ) - 1, I ξ1[ ω]])*(
ParabolicCylinderD[-I M/(2 λ), ξ2[ ω]] + I *Sqrt[M/λ]*(I - 1)/2*

ParabolicCylinderD[-I M/(2 λ) - 1, ξ2[ ω]]) + (I ParabolicCylinderD[
I M/(2 λ), I ξ2[ ω]] + Sqrt[M/λ]*(-I - 1)/2*ParabolicCylinderD[I M/(2 λ) - 1,
I ξ2[ ω]])*(ParabolicCylinderD[-I M/(2 λ), ξ1[ ω]] - I *Sqrt[M/λ]*(I - 1)/2*
ParabolicCylinderD[-I M/(2 λ) - 1, ξ1[ ω]])
g:=FullSimplify[f, {ω>0&&M>0&&λ>0}]
h:=FullSimplify[g/.{M->2, λ->100}]
Plot[{ Re[h], Im[h]}, {ω, 0, 20}, PlotPoints -> 50, MaxRecursion -> 0]
FindRoot[Im[h],{ω,5}]

I have searched through some posts with the keyword "find all roots in a range"; however, most of the solutions are for simpler functions than this special parabolic cylinder functions, c.f. About multi-root search in Mathematica for transcendental equations and Find all roots of an interpolating function (solution to a differential equation).



I would appreciate any help. Thank you in advance.



Answer




...most of the solutions are for simpler functions...



I'm not quite sure what gave OP that impression; certainly, FindAllCrossings[] is quite capable of handling transcendental equations, as long as all the roots being sought are simple.


But first: I slightly tidied up the definition of f[] (e.g. by using auxiliary variables for common subexpressions), as the original version brought tears to my sensitive eyes:


f[M_?NumericQ, λ_?NumericQ, ω_?NumericQ] := Module[{c, k, ξ1, ξ2},
c = Sqrt[M/λ]; k = I M/(2 λ);
ξ1 = (I - 1) (ω/Sqrt[λ] - Sqrt[λ]/2); ξ2 = (I - 1) (ω/Sqrt[λ] + Sqrt[λ]/2);

({1 + I, -I c}.ParabolicCylinderD[{-k, -k - 1}, ξ2]
{c, 1 + I}.ParabolicCylinderD[{k - 1, k}, I ξ1] -
{I c, 1 + I}.ParabolicCylinderD[{-k - 1, -k}, ξ1]
{c, -1 - I}.ParabolicCylinderD[{k - 1, k}, I ξ2])/2]

...and with that,


roots = FindAllCrossings[Im[f[2, 100, ω]], {ω, 0, 50}, WorkingPrecision -> 20]
{1.4210217375131208861, 4.9080677718060732317, 7.6276760758692264160,
11.242328271551264279, 14.025220377481373494, 17.188413671355074367,
20.686743750589305061, 23.568643080603343806, 26.490531437543067517,

29.849368653509459477, 33.222900929283185978, 36.429230282166527794,
39.466210718845193558, 42.459671861175573218, 45.512697669849073416,
48.625869297148536333}

As a graphical verification:


Plot[Im[f[2, 100, ω]], {ω, 0, 50},
Epilog -> {Red, AbsolutePointSize[4], Point[Thread[{roots, 0}]]},
Frame -> True, PlotStyle -> RGBColor[59/67, 11/18, 1/7]]

roots of a linear combination of PCFs



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...