Skip to main content

calculus and analysis - Integral of the Sinc product


Let us consider the following integral $$ B_n = \int_0^\infty \prod_{k=1,3,5,\dots}^n\frac{\sin (x/k)}{x/k}dx $$


By definition, Sinc[x] == Sin[x]/x, therefore


B[n_?OddQ] := Integrate[Product[Sinc[x/k], {k, 1, n, 2}], {x, 0, Infinity}]

B /@ Range[1, 13, 2]



{Pi/2, Pi/2, Pi/2, Pi/2, Pi/2, Pi/2, Pi/2}

OK, everything is fine. But...


B[15]


467807924713440738696537864469 Pi/935615849440640907310521750000

What's going on?




Answer




As Eckhard wrote in comments B[n] is the n-th Borwein integral.


(The letter B was not accidental :) )


This funny properties of Borwein integrals is related to the Fourier transform of Sinc function


FourierTransform[Sinc[x], x, k]


1/2 Sqrt[Pi/2] (Sign[1 - k] + Sign[1 + k])


Plot[%, {k, -2, 2}, Filling -> 0]

enter image description here


which is the box function. The result is $\pi/2$ while the sum $$ 1/3+1/5+\dots+1/n < 1. $$ If $n \ge 15$ the sum exceeds $1$ and the result becomes


$$ B_n = \frac{\pi}{2} - \pi \bigg(\sum_{k=3,5,\ldots}^n\frac{1}{k} -1\biggr)^\frac{n-1}{2}\prod_{k=3,5,\dots}^n\frac{k}{k-1}. $$


For $n=15$ it is equal to


$$ \frac{467807924713440738696537864469}{935615849440640907310521750000}\pi. $$


As a prank, Jonathan Borwein reported this to Maple, claiming there was a bug in the software. Maple computer scientist Jacques Carette spent 3 days trying to figure out the problem. Then he realized: There was no bug! That's what these integrals really equal!


The Borwein brothers are the same guys who noticed that the integral


$$ \int_0^\infty \cos(2x) \cos(x) \cos(x/2) \cos(x/3) \cos(x/4) \dots dx $$



matches $\pi/8$ up to $43$ decimal places, but is not equal to $\pi/8$. So you've got to be careful with these guys!


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.