Skip to main content

geographics - Geography in 3D perspective


I would like to build a GeoGraphics map showing a z-elevated perspective (e.g. the view from a plane). Specifically, I'm looking to use multiple GeoMarker's (with custom graphics) in the pseudo-3D perspective.


For example, consider this plot of the Eiffel Tower:


enter image description here



I would like to reproduce it in a 3D perspective like this:


enter image description here


Both examples come from google maps, I’m not sure if this is possible in 11.3, but would love to know.



Answer



You could use an orthographic with a custom centering:


GeoGraphics[
Entity["Building", "EiffelTower::5h9w8"],
GeoProjection -> {"Orthographic", "Centering" -> GeoPosition[{-30.858`, 2.295`}]},
GeoZoomLevel -> 18,
GeoRange -> {{48.852`, 48.872`}, {2.2895`, 2.2995`}}

]


Note that this does incorporate the curvature of the earth and will be noticeable over larger areas.


If you're after something flat, you could always inset the tiles in 3D and pick custom View* values. Note I pad the range to allow the map to be seen at an angle:


im = GeoImage[
Entity["Building", "EiffelTower::5h9w8"],
"StreetMapNoLabels",
GeoZoomLevel -> 17,
GeoRange -> {{48.852`, 48.872`}, {2.285`, 2.305`}}

];

{x, y} = ImageDimensions[im];

Graphics3D[
{Texture[im], EdgeForm[], Polygon[{{0, 0, 0}, {x, 0, 0}, {x, y, 0}, {0, y, 0}},
VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}]},
Background -> Black,
Boxed -> False,
Lighting -> "Neutral",

ViewAngle -> 0.03233723833101999`,
ViewCenter -> {{0.5`, 0.5`, 0.5`}, {1.4456583184354543`, 0.7806170277104297`}},
ViewPoint -> {1.076788325190908`, -3.1635309749673284`, 0.5316001064285271`},
ViewVertical -> {0.00011882147473772082`, -0.00015290540260965785`, 0.9999999812506973`}
]

enter image description here




Here's a way to 'lift' a GeoGraphics object into 3D. My solution is probably not robust but works for simple cases:


GeoGraphics3D[args__] := Block[{g2d, g3d, ε = .0001},

g2d = GeoGraphics[args][[1, 1]] /. {___, Opacity[0], ___} -> {};
g3d = g2d /. {
expr : _[VertexTextureCoordinates, _] :> expr,
Inset[g_, {x_, y_}, opos_, Offset[o_]] :> Inset[g, RotationTransform[\[CurlyEpsilon], {0, -1, 0}]@{x, y, 0}, opos, .5 o],
{x_Real, y_} :> RotationTransform[\[CurlyEpsilon], {0, -1, 0}][{x, y, 0}]
};

Graphics3D[
g3d,
Boxed -> False,

ImageSize -> Large,
Lighting -> {{"Ambient", White}}
]
]

Example:


eif = Entity["Building", "EiffelTower::5h9w8"];

Show[
GeoGraphics3D[

{GeoMarker[eif], Text[Style["Eiffel Tower", ColorData[112, 1], 14], eif, {0, 1}]},
GeoRange -> Quantity[1000, "Meters"],
GeoZoomLevel -> 17
],
ViewAngle -> 2°,
ViewPoint -> {1.75`, -2.85`, 0.55`}
]

enter image description here


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....