Skip to main content

number representation - Maintaining working precision in my program


I am badly stuck with this program I am writing. I want output of program below to be precise up to 25 digits after decimal point. I am supplying all inputs with precision 25. But after each iteration of main for loop, precision keeps on decreasing by some points. And as a result in about 100 iterations precision comes down to 0. I tried everything that I can think of including explicitly setting precision using SetPrecision in f1,f2,f3,N1,N2,N3,a. That would produce output but it's not correct as SetPrecision is just padding the digits from right. Appreciate any help/suggestions. Thankx.


Input:



Clear["Global`*"]; order = 0.89`25; parameter = 27.3`25; ic = {1000000001/100000000`25., 
10, 10}; SIZE = 100;

Program:


   AbsoluteTiming[alph = bet = gam = order; h = 2/100; omeg = -2667/1000;
mu = 10; A = parameter; B = 1;
Array[y1, SIZE, 0]; y1[0] = ic[[1]];
Array[y2, SIZE, 0]; y2[0] = ic[[2]]; Array[y3, SIZE, 0];
y3[0] = ic[[3]];
a[0 _, k_] := (k - 1)^(alph + 1) - (k - 1 - alph) k^alph;

a[j_, k_] := (k - j + 1)^(alph + 1) + (k - 1 - j)^(alph + 1) -
2 (k - j)^(alph + 1) /; (1 <= j <= k - 1);
a[j_, k_] := 1 /; j == k;
l1 := h^alph/Gamma[alph + 2]; l2 := h^bet/Gamma[bet + 2];
l3 := h^gam/Gamma[gam + 2];
f1[t_, n_] :=
l1*Sum[a[j, n]*omeg*y1[j], {j, 0, n - 1}] -
l1*Sum[a[j, n]*y2[j]*y2[j], {j, 0, n - 1}];
f2[t_, n_] :=
mu + l2*Sum[a[j, n]*mu*y3[j], {j, 0, n - 1}] -

l2*Sum[a[j, n]*mu*y2[j], {j, 0, n - 1}];
f3[t_, n_] :=
mu + l3*Sum[a[j, n]*A*y2[j], {j, 0, n - 1}] -
l3*Sum[a[j, n]*B*y3[j], {j, 0, n - 1}] +
l3*Sum[a[j, n]*y1[j]*y2[j], {j, 0, n - 1}];
N1[u1_, u2_, u3_] := l1*(omeg*u1 - u2*u2);
N2[u1_, u2_, u3_] := l2*(mu*u3 - mu*u2);
N3[u1_, u2_, u3_] := l3*(A*u2 - B*u3 + u1*u2);
For[i = 1, i <= SIZE - 1, i++, (*main loop*)
y10 = f1[h*i, i];

y20 = f2[h*i, i];
y30 = f3[h*i, i];
y11 = N1[y10, y20, y30];
y21 = N2[y10, y20, y30];
y31 = N3[y10, y20, y30];
y12 = N1[y10 + y11, y20 + y21, y30 + y31] - N1[y10, y20, y30];
y22 = N2[y10 + y11, y20 + y21, y30 + y31] - N2[y10, y20, y30];
y32 = N3[y10 + y11, y20 + y21, y30 + y31] - N3[y10, y20, y30];
y1[i] = y10 + y11 + y12;
y2[i] = y20 + y21 + y22;

y3[i] = y30 + y31 + y32;];
xx = Table[y1[i], {i, 0, SIZE - 1}];
yy = Table[y2[i], {i, 0, SIZE - 1}];
zz = Table[y3[i], {i, 0, SIZE - 1}];
]

Output error: General::ovfl: Overflow occurred in computation. >> Further it tells me there are no significant digits remaining to display.


Output:
In[78]:= xx


Out[78]= {1.000000000000000000000000, -3.35160956937173040383529, \
-7.6063107290506868684570, -13.965998348176594403068, \
-23.217734641185881084877, -34.75517400137475702813, \
-45.6273435387493774249, -52.0072035922437294633, \
-52.794258502857519941, -49.988719962104854383, \
-45.92876611511978598, -41.92397139618361145, -38.44386042357929135, \
-35.5347038434195767, -33.090746410617466, -30.988018715710107, \
-29.13155464170869, -27.46064718989206, -25.9403613009447, \
-24.5520756248237, -23.286816115939, -22.14149256760, \
-21.11722129330, -20.2189730943, -19.4560502901, -18.843109037, \

-18.401537933, -18.16095921, -18.16039845, -18.4482145, -19.0791605, \
-20.106105, -21.563607, -23.44219, -25.65784, -28.0311, -30.298, \
-32.166, -33.40, -33.90, -33.7, -32.9, -32., -30., -3.*10^1, \
-3.*10^1, -0.*10^1, 0.*10^2, 0.*10^3, 0.*10^7, 0.*10^19, 0.*10^63,
0.*10^219, 0.*10^766, 0.*10^2695, 0.*10^9485, 0.*10^33394,
0.*10^117589, 0.*10^414071, 0.*10^1458094, 0.*10^5134494,
0.*10^18080495, 0.*10^63668287, 0.*10^224200219, Overflow[],
Overflow[], Overflow[], Overflow[], Overflow[], Overflow[],
Overflow[], Overflow[], Overflow[], Overflow[], Overflow[],
Overflow[], Overflow[], Overflow[], Overflow[], Overflow[],

Overflow[], Overflow[], Overflow[], Overflow[], Overflow[],
Overflow[], Overflow[], Overflow[], Overflow[], Overflow[],
Overflow[], Overflow[], Overflow[], Overflow[], Overflow[],
Overflow[], Overflow[], Overflow[], Overflow[], Overflow[]}

Precision:


In[79]:= Precision[xx]

Out[79]= 0.


Program works fine with MachinePrecision but that is not output I want.




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...