Skip to main content

manipulate - trouble with Dynamic range in SetterBar


It appears that I can set the range to a Dynamic variable in a Manipulate control, but not in a SetterBar control? :


Manipulate[
tick;
Dynamic@If[ tabNumber == dynTab, Plot[ x^2, {x, 0, 1}],

Plot[ 1 - x^2, {x, 0, 1}]]
, TabView[ {
"dynamic range" -> Column[ tabNumber = dynTab ; {
Row[{Manipulator[
Dynamic[m2, (m2 = #; tick = Not[tick]) &], {2, Dynamic@range,
2}], " ", Dynamic[m2] }],
Row[{SetterBar[Dynamic[s2, (s2 = #; tick = Not[tick]) &],
Range[Dynamic@range]], " ", Dynamic[s1] }]
}],
"static range" -> Column[ tabNumber = staticTab ; {

Row[{Manipulator[
Dynamic[m1, (m1 = #; tick = Not[tick]) &], {2, 8, 2}], " ",
Dynamic[m1] }],
Row[{SetterBar[Dynamic[s1, (s1 = #; tick = Not[tick]) &],
Range[8]], " ", Dynamic[s1] }]
}]
}, Dynamic @tabNumber ]
, {{tick, False}, None}
, {{tabNumber, 1}, None}, {{dynTab, 1}, None}, {{staticTab, 2}, None}
, {{m1, 2}, None}, {{m2, 2}, None}, {{s1, 2}, None}, {{s2, 2}, None}

, {{range, 8}, None}
, TrackedSymbols :> {tick}, ControlPlacement -> Left
]

This produces an error 'Range::range: "Range specification in Range[range] does not have appropriate bounds. "':


Range error


Observe that the Manipulate in the same tab that uses a Dynamic range works fine. The other tab (not shown in the image) that uses static ranges is fine (for both Manipulate and SetterBar)?


[EDIT:]


Nasser suggested Evaluate@With[{range = ...}, ...], which assumed range was constant, as in the example above. Here's an example that is more representitive of what I'm attempting to do (with range based on the count of the number of Locators in a LocatorPane, which can be added with Alt-Click in that pane).


Manipulate[tick;

If[tabNumber == dynTab, Plot[x^2, {x, 0, 1}],
Plot[1 - x^2, {x, 0, 1}]]
, TabView[{
"use n-loc as range" -> Column[tabNumber = dynTab; {
"dynamic range manipulators:",
Row[{Manipulator[Dynamic[m2, (m2 = #; tick = Not[tick]) &],
Dynamic@{1, 2 range}], " ", Dynamic[m2]}],
Row[{SetterBar[Dynamic[s2, (s2 = #; tick = Not[tick]) &],
Dynamic@Range[range]], " ", Dynamic[s1]}],
"static range manipulators:",

Row[{Manipulator[
Dynamic[m1, (m1 = #; tick = Not[tick]) &], {1, 4}], " ",
Dynamic[m1]}],
Row[{SetterBar[Dynamic[s1, (s1 = #; tick = Not[tick]) &],
Range[4]], " ", Dynamic[s1]}]
}],
"loc" -> Column[tabNumber = staticTab; {
LocatorPane[ Dynamic[u, (
u = # ;
range = (Dimensions[u] // First);

tick = Not[tick]) &],
Plot[x^3, {x, -1, 1}, PlotRange -> {{-1, 1}, {-1, 1}}],
LocatorAutoCreate -> True,
ContinuousAction -> False
]
, Row[{"u = ", Dynamic@u}]
}]
}, Dynamic@tabNumber]
, {{tick, False}, None}
, {{u, {{0.5, 0.3}, {0.3, 0.9}}}, None}

, {{tabNumber, 1}, None} , {{dynTab, 1}, None} , {{staticTab, 2}, None}
, {{m1, 2}, None} , {{m2, 2}, None} , {{s1, 2}, None} , {{s2, 2}, None}
, {{range, 2}, None}
, TrackedSymbols :> {tick}, ControlPlacement -> Left
(*use a global (comment out range above to try) ... doesn't work: *)
(*, Initialization\[RuleDelayed] { range = 2 ; }*)
]

In this example, I put the Dynamic outside of the Range expression. This eliminates the error text, but still doesn't work. The SetterBar shows up as text: SetterBar[2, {1,2}]



Answer




Dynamic[SetterBar[Dynamic[s2, (s2 = #; tick = Not[tick]) &], Range[range]], 
TrackedSymbols :> {range}]

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.