Skip to main content

graphics - How to join each of the spheres? Or, how to make a 3D grid?


Graphics3D[{
{RGBColor[#], Sphere[#, 1/50]} & /@ Tuples[Range[0, 1, 1/5], 3]
}
]


It gives this:


enter image description here


Now I want to get this one:


enter image description here


How? As simple as doable. Thanks in advance.



Answer



Another way is to create a 3D matrix with the points only once and utilize Transpose to transform the points so that the lines are drawn in all directions.


See, that the most important line below is the first Map where I transposed pts to go along each of the three directions


With[{pts = 
Table[{i, j, k}, {k, 0, 1, 1/5}, {j, 0, 1, 1/5}, {i, 0, 1, 1/5}]},

Graphics3D[
{
Map[Line, #, {2}] & /@ {pts, Transpose[pts, {3, 2, 1}], Transpose[pts, {1, 3, 2}]},
Map[{RGBColor[#], Sphere[#, 1/50]} &, pts, {3}]
}
]
]

Mathematica graphics


Detailed Explanation



Let me explain in detail what happens in this approach by using only a 2d example: A simple 2d array consisting of points can be created by


pts = Table[{i, j}, {j, 3}, {i, 3}]
(*{
{{1, 1}, {2, 1}, {3, 1}},
{{1, 2}, {2, 2}, {3, 2}},
{{1, 3}, {2, 3}, {3, 3}}
}*)

Instead of looking at this as a matrix of points, you could look at it as a list of line-points. Note how we have 3 lists of points with the same y-value and increasing x-value. Looking at the usages of Line one sees this




Line[{{p11,p12,...},{p21,...},...}] represents a collection of lines.



This is exactly the form we have right now and it means, we can directly use Graphics[Line[pts]] with this matrix and get 3 horizontal lines. If you now look at the output above as matrix again, and think about that when you Transpose a matrix you make first row to first column, second row to second col, ... then see, that you would get points, where the x-value stays fixed and the y-values changes


Transpose[pts]
(*{
{{1, 1}, {1, 2}, {1, 3}},
{{2, 1}, {2, 2}, {2, 3}},
{{3, 1}, {3, 2}, {3, 3}}
}*)


These three lines are exactly the vertical part of the grid. Therefore


Graphics[{Line[pts], Line[Transpose[pts]]}]

or a tiny bit shorter


Graphics[{Line /@ {pts, Transpose[pts]}}]

gives you the required grid 2d. In 3d the approach is basically the same. The only difference is, that you have to specify exactly which level you want to transpose and you cannot simply apply Line to the whole 3d matrix. You have to Map the Lines to come at least one level deeper.


Understanding this, and all the approaches in the other answers, helps always to gain a deeper understanding of how easily list-manipulation can solve such problems and to learn more about the internal structure of Graphics and Graphics3D.


An application for such grids is sometimes to visualize 2d or 3d mappings. Since we now know, how the Graphics structure looks inside, we can transform it directly. Creating a 2d grid with the above approach:


pts = Table[{i, j}, {j, -1, 1, .1}, {i, -1, 1, .1}];

gr = Graphics[{RGBColor[38/255, 139/255, 14/17], Line[pts],
RGBColor[133/255, 3/5, 0], Line[Transpose[pts]]}]

Mathematica graphics


And now you can just use a function which is applied to all points inside the Line directives:


f[p_] := 1/(Norm[p] + 1)*p;
gr /. Line[pts__] :> Line[Map[f, pts, {2}]]

Mathematica graphics


This works of course in 3d too



gr3d = With[{pts = 
Table[{i, j, k}, {k, -1, 1, .4}, {j, -1, 1, .4}, {i, -1,
1, .4}]},
Graphics3D[{Map[(Tube[#, 0.005] &), #, {2}] & /@ {pts,
Transpose[pts, {3, 2, 1}], Transpose[pts, {1, 3, 2}]},
Map[{RGBColor[#], Sphere[#, 1/40]} &, pts, {3}]}]];
gr3d /. {Sphere[pts_, r_] :> Sphere[f[pts], r],
Tube[pts_, r_] :> Tube[f /@ pts, r]}

Mathematica graphics



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...